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M o t i v a t i o n

Economic activities rarely occur in isolation — agents are

embedded in networks and experience spillovers.a

T h e i s s u e

We rarely observe the networks behind spillovers, and

models suffer from the curse of dimensionality.

aSee, e.g., Akcigit et al., 2021; Alfaro-Ureña et al., 2022; Ambrus and Elliott, 2021;

Canen et al., 2023; Chetty et al., 2022; Dhyne et al., 2021; Giovanni et al., 2022;

Vom Lehn and Winberry, 2022; Weidmann and Deming, 2021.
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O v e r v i e w

With networks unknown, models rely on assump-

tions and approximate information.

How far is Berkeley from Stanford?

Who are your five best friends?

Who do you ask for advice?

Today, I will show

that these restrictions distort inference, and

how to address this with a Bayesian approach.
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C o n t r i b u t i o n s a n d l i t e r a t u r e

Today, I’ll focus on the main contribution to a growing

literaturea — a Bayesian hierarchical approach to

model spillovers and latent networks behind them.

Compared to the literature, my approach

flexibly leverages information of all kinds,

naturally conveys uncertainty via full posteriors,

is generally applicable.

aIncluding Boucher and Houndetoungan, 2023; Debarsy and LeSage, 2022; de

Paula et al., 2023; Goldsmith-Pinkham and Imbens, 2013; Griffith, 2022;

Herstad, 2023; Hsieh and Lee, 2016; Lewbel et al., 2023; Zhang and Yu, 2018.

𝜇1 𝜇2𝜗

p(𝜗 ∣ 𝒟)

Information may include

geography, characteristics,

group structures, proxies,

repeated observations,

sparsity, etc. and is imposed

via structure and priors.
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S e t t i n g

Consider a set of agents 𝒜, for who we observe random
responses 𝑌 ∈ ℝ and characteristics 𝑋 ∈ ℝ𝑝.

These agents have a set of links ℰ between them — they
are connected in the network 𝒢 = {𝒜,ℰ}.

We want to learn about the relationship

𝑌 = 𝑓 (𝑋,𝒢 ) + 𝜀,

and will need to impose some structure on 𝑓 and 𝒢.
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A m o d e l f o r 𝑓

Any economist’s favorite model for 𝑓 is

(1) 𝐲 = 𝐗𝜷 + 𝐞.

However, an agent’s response may depend on 𝒢.

in terms of their peers’ characteristics,

and the responses of their peers.

L i n e a r n e t w o r k m o d e l

The network is represented by𝐖. Special cases are the
linear-in-means and spatial Durbin models, which

constrain𝐖 and treat it as given.

𝑦𝑖

𝑦𝑗
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D o e s t h e n e t w o r k m a t t e r ?

Consider network effectsa based on

1. contiguity of US states, proxied with

2. averages of contiguous states, and

3. distance-decay between centers.

aThe true values are 𝜆 = 0.3, 𝜃 = 0.5.
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T h e n e t w o r k

Wewill represent the network with the graph

𝒢 = {𝒜,ℰ}, which we allow to be

weighted — links are induced and measured by

𝑔 ∶ 𝒜 × 𝒜 ↦ ℝ+,

directed — links need not be reciprocal.

i j

k

A d j a c e n c y m a t r i x

The graph corresponds to the matrix 𝐆
with entries given by 𝑔𝑖𝑗 = 𝑔(𝑖, 𝑗).

𝐆 =

⎡
⎢⎢⎢⎢
⎣

0 𝑔12 … 𝑔1𝑛
𝑔21 0 … 𝑔2𝑛
⋮ ⋮ ⋱ ⋮
𝑔𝑛1 𝑔𝑛2 … 0

⎤
⎥⎥⎥⎥
⎦

.
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T h e n o r m a l i z e d a d j a c e n c y m a t r i x

In practice, a normalized adjacency matrix𝐖 is
used, such that 𝜆 and 𝜽 are identified.

R o w n o r m a l i z a t i o n

The standard is to transform 𝐖̃ to be
row-stochastic, such that ∑𝑗𝑤𝑖𝑗 = 1 ∀𝑖.

S c a l a r n o r m a l i z a t i o n

Wewill use scalar normalization, such that

𝑤𝑖𝑗 = 𝑔𝑖𝑗 × 𝜍 ∀𝑖, 𝑗, in order to preserve the
network structure. See more

i j

k

0.5

1.0

0.51.0

𝐆 =
⎡
⎢
⎣

0 1.0 1.0
0 0 0.5
0.5 0.5 0

⎤
⎥
⎦
,

𝐖̃ =
⎡
⎢
⎣

0 0.5 0.5
0 0 1.0
0.5 0.5 0

⎤
⎥
⎦
.
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N e t w o r k m o d e l — f u l l p a r a m e t e r i z a t i o n

Wewant to model links, and could do so directly

𝑔𝑖𝑗 ∼ 𝑓(⋅) ∀𝑖 ≠ 𝑗.

At 𝒪 (𝑁 2) unknown links, we’d need either

repeated observations of the network, or

heavy shrinkage to make this work.

We want to constrain the dimensionality by im-

posing some structure on 𝒢, allowing formore
nuance where it is needed.

Essentially, this is the approach

of de Paula et al. (2023), who

regularize using an elastic net.

0

p(𝑔𝑖𝑗)

𝑔𝑖𝑗
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I m p o s i n g s t r u c t u r e — A ( M e t r i c ) S p a c e O d y s s e y

Alternatively, assume that we can locate our agents in

some (generalized) metric space (𝒫, d).a

Then, we can think of links as decaying in the distance

between latent positions 𝑃 ∈ ℝ𝐷 of agents, e.g.

𝑔𝑖𝑗 = e x p {− d𝑖𝑗 } ∀𝑖 ≠ 𝑗.

We may also consider, e.g., the speed of decay,

or asymmetries via popularity or gravity.

aThis is rather natural in a spatial setting, and has been used successfully used for

modelling social networks (going back to Hoff et al., 2002).

𝐴

𝐵

i

j

k
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between latent positions 𝑃 ∈ ℝ𝐷 of agents, e.g.

𝑔𝑖𝑗 = e x p {− 𝛿 × 𝜙−1
𝑖 × d𝑖𝑗 } .

We may also consider, e.g., the speed of decay,

or asymmetries via popularity or gravity.

aThis is rather natural in a spatial setting, and has been used successfully used for

modelling social networks (going back to Hoff et al., 2002).
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𝐲 = 𝜆𝐖𝐲 + 𝐖̇𝐗𝜽 + 𝐗𝜷 + 𝐞, w h e r e 𝐖, 𝐖̇ = 𝑓 (⋅)

N e s t e d s p e c i fi c a t i o n s

Latent positions may be informed

by geographical coordinates, by

homophilic characteristics, or entirely

unknown.

F l e x i b i l i t y

Depending on the setting and

available information, we adjust the

structure and fix, shrink, or free up

parameters.

E s t i m a t i o n o r : H o w I L e a r n e d t o S t o p W o r r y i n g a n d L o v e M C M C

Adaptive MCMC facilitates full posterior inference, nuancedweakly

informative priors improve convergence, and a Gaussian process

approximation for costly Jacobians improves speed. See more
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T h e a p p r o a c h i n p r a c t i c e

We’ll simulate repeatedly from

𝐲𝑡 = 𝛼 + 𝜆𝐖𝐲𝑡 + 𝐱𝑡𝛽 + 𝐖̇𝐱𝑡𝜃 + 𝐞𝑡, where 𝐱𝑡, 𝐞𝑡 ∼ N(0, 1).

The networks behind𝐖 stem from
1. distance between US population centers

sparse/dense, asymmetric/symmetric

2. random Erdős–Rényi graph —ℳopen.

S e t u p

I’ll model the locations, speed of distance-decay, and popularity. The

priors will be too flat, and the sampler’s initialised first at the true

values, then at draws from the prior.
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S i m u l a t i o n r e s u l t s — U S p o p u l a t i o n

The first network is determined as

𝑔𝑖𝑗 = e x p {−𝛿𝑖 × d (𝐩𝑖, 𝐩𝑗)} ,

where popularity 𝛿𝑖 is driven by a state’s
population, and 𝐩𝑖 its population center.

I’ll start by estimating 𝜆, 𝜃 in a long panel (𝑇 = 50) using

contiguity between states,

distance-decay between centers, and

the true model of location & popularity.
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S i m u l a t i o n r e s u l t s — t h e E r d ő s – R é n y i g r a p h

The graph (𝑁 ∈ {30, 50}) is determined as

𝑔𝑖𝑗 =
⎧
⎨
⎩

1with probability 0.25,

0 otherwise.

Our model uses the same distance-decay

specification as before.

To highlight convergence, we’ll have a look

at posteriors of 𝜆 for multiple simulations
after a short burn-in of 1,000 draws.

A realization of 𝒢(30, 0.25).
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C o n c l u s i o n

I developed a framework for jointly modelling 𝑓 and 𝒢,
that flexibly leverages data, structure, and shrinkage.

It’s widely applicable to network and spatial settings

with no, limited, or uncertain information on diverse links,

allowing us to gain deeper insights into spillovers,

at moderate to pronounced computational costs.

For more details and info on identification, priors, sam-

pling, and applications have a look at the appendix, or —

coming soon™ to a repository near you — a draft.
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M o d e l

We are interested in

𝑝(Θ,ℰ ∣ 𝒟) ∝ 𝑝(Θ, ∣ ℰ,𝒟) × 𝑝(ℰ ∣ Θ,𝒟),

or, to be more concrete, in

𝐲 = (𝐈 − 𝜆𝐖)−1𝐳,

𝐳 = 𝐗𝜷 + 𝐖̇𝐗𝜽 + 𝜺,

where𝐖 = 𝑔(⋅)𝜍, 𝐖̇ = 𝑔(⋅)𝜍̇, and 𝑔 is based on a network model of choice.
Options include the ones described, many others, or a combination thereof.

I d e n t i fi c a t i o n

We can identify the parameters 𝜆, 𝜽with mild constraints. Network
parameters are generally only weakly identified. We can alleviate this by

imposing constraints from the literature or prior information.



N o r m a l i z a t i o n — m u l t i p l i e r e f f e c t

Consider a network autoregression

𝐲 = 𝜆𝐖𝐲 + 𝐞.

The following result guarantees stability.

T h e o r e m

Let 𝐈 denote the identity matrix, and 𝛼 be a real scalar.
Then 𝐈 − 𝛼𝐀 is stationary for 𝛼 ∈ (−𝜌𝐀, 𝜌𝐀), where 𝜌𝐀
denotes the spectral radius of 𝐀.

By normalizing with the spectral radius (i.e. 𝜍 = 𝜌−1𝐆 ),
we can let 𝜆 ∈ (−1, 1). This relates 𝜆 to the dominant
eigenvector of the network, which generally does not

coincidewith the average partial effect of𝐖.

i j

k

0.5

1.0

1.0 0.5

Row-normalization distorts,

e.g., the eigenvector central-

ity 𝑐.

𝑖 𝑗 𝑘

𝑐𝐆 2−1 6−1 3−1

𝑐𝐖̃ 3−1 3−1 3−1.

In fact, 𝜆 is at least the
average partial effect (by

the spectral radius being the

infimum norm).



N o r m a l i z a t i o n — c o n t e x t u a l e f f e c t

Consider a contextual model

𝐲 = 𝜆𝐖̇𝐗𝜽 + 𝐞.

In this case, we have fewer requirements of the

normalization. One sensible option is to fix 𝜽 at the
average partial effect of the network characteristics.a

We can achieve that by setting 𝐖̇ such that it sums
to 𝑁 —we scale with 𝜍̇ = 𝑁

∑𝑖∑𝑗 𝑔𝑖𝑗
.

This applies similarly to the nested linear model

when a network multiplier is present. Go back

aAn alternative when some agents are not linked in the network, is the average

partial effect for all agents that are linked within the network.

𝜕𝐳
𝜕𝐱𝑘

= 𝐈𝛽𝑘 + 𝐖̇𝜃𝑘.



E s t i m a t i o n

For full posterior inference, we extend existingMCMC

methods — the central term (suppressing contextual ef-

fects) is given by

|𝐒(𝜆, ⋅)| e x p {−
1
2𝜎2 (𝐒(𝜆, ⋅)𝐲 − 𝐗𝜷)′ (𝐒(𝜆, ⋅)𝐲 − 𝐗𝜷)} ,

where 𝐒(𝜆, ⋅) = (𝐈 − 𝜆𝐖) is a spatial filter. The main con-
cerns are essentially computational — we need

1. convergence of parameters,

2. to evaluate the 𝑁 × 𝑁 Jacobian determinant.

We use Gibbs and

Metropolis-Hastings

steps, as well as a

rejection sampler

to draw from the

posterior.



W e a k l y i n f o r m a t i v e p r i o r s

We use weakly informative priors to (1) help improve

convergence of the MCMC samples, and (2) build a more

credible, realistic model.

Two central parameters are 𝜆 and 𝜽. For the former, I
propose the hierarchical prior

𝜆 ∼ Beta (1 + 𝜏, 1 + 𝜏) , 𝜏 ∼ Gamma,

which adds barely any computational overhead,a but fa-

cilitates much better shrinkage towards, e.g., zero, while

providing wide support.

For 𝜽, which resembles a standard coefficient, standard
global-local shrinkage priors are applicable.

aThanks to a rejection sampler based on a Gamma proposal density.

Parameters for the

network structure also

greatly benefit from

weakly informative

priors, and even

more from actually

informative ones.

Options for 𝜽 include
the Horseshoe,

Dirichlet–Laplace, and

the Normal-Gamma

shrinkage priors.



A B e t a p r i o r …
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Figure 1: Scaled Beta(1 + 𝜏, 1 + 𝜏) densities with increasing weight, 𝜏.



… w i t h a G a m m a m i x i n g d i s t r i b u t i o n
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Figure 2: Scaled Beta(1 + 𝜏, 1 + 𝜏), 𝜏 ∼ Exp(𝛽) with increasing weight, 𝔼 [𝜏] = 1/𝛽. Go back



J a c o b i a n d e t e r m i n a n t

In standard models, we’d compute the spectral decomposition of𝐖
once and compute the determinant using𝐖’s eigenvalues (𝜂𝑖), as

l n |𝐈 − 𝜆𝐖| =
𝑁
∑
𝑖=1
l n (1 − 𝜆𝜂𝑖) .

However, our𝐖 is mutable, and computing eigenvalues for every

draw of 𝛿 is prohibitive at 𝒪(𝑁 3) complexity.

For models with limited parameters for the network structur, I pro-

pose a Gaussian process approximation instead —

|𝐒(𝜆, ⋅)| ≈ G P (𝜇(𝜆, ⋅), 𝚺(𝜆, ⋅)) .



G a u s s i a n p r o c e s s a p p r o x i m a t i o n
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Figure 3: GP approximation to |𝐒(𝜆)| using 50 training samples. Distances are between
𝑁 = 100 locations with Uniform random coordinates.



-0.5 0.0 0.5

2
4

6
8

10

0

2

4

6

8

10

|S| ~ GP(λ, δ), absolute error

Figure 4: GP approximation to |𝐒(𝜆, 𝛿)| using 50 × 20 training samples.



I m p o s i n g s t r u c t u r e — L i n k s W i d e l y S h u t

One way to reduce the dimension-

ality is by constraining links to only

occur within groups.a Go back

Country

NUTS 1 NUTS 2

Austria

3 9

Czechia

1 8

South Germany

2 (16) 11 (38)

Switzerland

1 7

Total (𝑁 2 − 𝑁)

42 1190

Grouped (∑𝑖 𝑁
2
𝑖 − 𝑁𝑖)

10 280

aThis is essentially the approach of Lewbel et al., 2023.
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S i m u l a t i o n r e s u l t s — U S c e n t r o i d s

The second network is determined as

𝑔𝑖𝑗 = e x p {−𝛿 × d (𝐩𝑖, 𝐩𝑗)} ,

where 𝐩𝑖 are centroids, and

the network is rather dense,

I initialize the sampler at random

locations to illustrate convergence.

We’ll have a look at posteriors of 𝜆 for
multiple simulations after a short burn-in

of 1,000 draws. Go back
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Figure 5: Traceplots for the posterior draws of 𝜆, 𝛿 (note the poor mixing), and the (scaled)
coordinates of Kentucky based on 𝑇 = 3 network observations.
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Figure 6: Traceplots for the posterior draws based on 𝑇 = 50 network observations. Note
the improved mixing behavior of 𝛿. Go back


