Shrinkage in Space

Spillovers and Networks in a Hierarchical Model

Nikolas Kuschnig
Causal Panel Data Conference, Stanford GSB
October 20 ${ }^{\text {th }}, 2023$
Vienna University of Economics and Business nikolas.kuschnig@wu.ac.at

Motivation

Economic activities rarely occur in isolation - agents are embedded in networks and experience spillovers. ${ }^{a}$

[^0]

Motivation

Economic activities rarely occur in isolation - agents are embedded in networks and experience spillovers. ${ }^{a}$

The issue

We rarely observe the networks behind spillovers, and models suffer from the curse of dimensionality.

[^1]

Overview

With networks unknown, models rely on assumptions and approximate information.

How far is Berkeley from Stanford?
Who are your five best friends?
Who do you ask for advice?

Overview

With networks unknown, models rely on assumptions and approximate information.

How far is Berkeley from Stanford?
Who are your five best friends?
Who do you ask for advice?
Today, I will show
■ that these restrictions distort inference, and
■ how to address this with a Bayesian approach.

Contributions and literature

Today, I'll focus on the main contribution to a growing literature ${ }^{a}$ - a Bayesian hierarchical approach to model spillovers and latent networks behind them.

[^2]
Contributions and literature

Today, I'll focus on the main contribution to a growing literature ${ }^{a}$ - a Bayesian hierarchical approach to model spillovers and latent networks behind them.

Compared to the literature, my approach
■ flexibly leverages information of all kinds,
n naturally conveys uncertainty via full posteriors,

- is generally applicable.

[^3]Information may include geography, characteristics, group structures, proxies, repeated observations, sparsity, etc. and is imposed via structure and priors.

Contributions and literature

Today, I'll focus on the main contribution to a growing literature ${ }^{a}$ - a Bayesian hierarchical approach to model spillovers and latent networks behind them.

Compared to the literature, my approach
■ flexibly leverages information of all kinds,
■ naturally conveys uncertainty via full posteriors,

- is generally applicable.
${ }^{\text {a Including Boucher and Houndetoungan, 2023; Debarsy and LeSage, 2022; de }}$
Paula et al., 2023; Goldsmith-Pinkham and Imbens, 2013; Griffith, 2022;
Herstad, 2023; Hsieh and Lee, 2016; Lewbel et al., 2023; Zhang and Yu, 2018.

Information may include geography, characteristics, group structures, proxies, repeated observations, sparsity, etc. and is imposed via structure and priors.

Contributions and literature

Today, I'll focus on the main contribution to a growing literature ${ }^{a}$ - a Bayesian hierarchical approach to model spillovers and latent networks behind them.

Compared to the literature, my approach
■ flexibly leverages information of all kinds,
■ naturally conveys uncertainty via full posteriors,
■ is generally applicable.

[^4]

Information may include geography, characteristics, group structures, proxies, repeated observations, sparsity, etc. and is imposed via structure and priors.

Setting

Consider a set of agents \mathscr{A}, for who we observe random responses $Y \in \mathbb{R}$ and characteristics $X \in \mathbb{R}^{p}$.

Setting

Consider a set of agents \mathscr{A}, for who we observe random responses $Y \in \mathbb{R}$ and characteristics $X \in \mathbb{R}^{p}$.
These agents have a set of links \mathscr{E} between them - they are connected in the network $\mathscr{G}=\{\mathscr{A}, \mathscr{E}\}$.

Setting

Consider a set of agents \mathscr{A}, for who we observe random responses $Y \in \mathbb{R}$ and characteristics $X \in \mathbb{R}^{p}$.

These agents have a set of links \mathscr{E} between them - they are connected in the network $\mathscr{G}=\{\mathscr{A}, \mathscr{E}\}$.

We want to learn about the relationship

$$
Y=f(X, \mathscr{G})+\varepsilon,
$$

and will need to impose some structure on f and \mathscr{G}.

A model for f

Any economist's favorite model for f is
(1)

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{e} .
$$

However, an agent's response may depend on \mathscr{G}.

A model for f

Any economist's favorite model for f is
(1)

$$
\mathbf{y}=\mathbf{W} \mathbf{X} \boldsymbol{\theta}+\mathbf{X} \boldsymbol{\beta}+\mathbf{e} .
$$

However, an agent's response may depend on \mathscr{G}.

- in terms of their peers' characteristics,

A model for f

Any economist's favorite model for f is

$$
\begin{equation*}
\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\mathbf{W} \mathbf{X} \boldsymbol{\theta}+\mathbf{x} \boldsymbol{\beta}+\mathbf{e} . \tag{1}
\end{equation*}
$$

However, an agent's response may depend on \mathscr{G}, e.g.,
■ in terms of their peers' characteristics,

- and the responses of their peers.

A model for f

Any economist's favorite model for f is

$$
\begin{equation*}
\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\mathbf{W} \mathbf{X} \boldsymbol{\theta}+\mathbf{x} \boldsymbol{\beta}+\mathbf{e} . \tag{1}
\end{equation*}
$$

However, an agent's response may depend on \mathscr{G}, e.g.,

- in terms of their peers' characteristics,

$■$ and the responses of their peers.

Linear network model

The network is represented by \mathbf{W}. Special cases are the linear-in-means and spatial Durbin models, which constrain W and treat it as given.

Does the network matter?

Consider network effects ${ }^{a}$ based on

1. contiguity of US states, proxied with
2. averages of contiguous states, and
3. distance-decay between centers.
${ }^{a}$ The true values are $\lambda=0.3, \theta=0.5$.

Does the network matter?

Consider network effects ${ }^{a}$ based on

1. contiguity of US states, proxied with
2. averages of contiguous states, and
3. distance-decay between centers.
${ }^{a}$ The true values are $\lambda=0.3, \theta=0.5$.

Does the network matter?

Consider network effects ${ }^{a}$ based on

1. contiguity of US states, proxied with
2. averages of contiguous states, and
3. distance-decay between centers.
${ }^{a}$ The true values are $\lambda=0.3, \theta=0.5$.

The network

We will represent the network with the graph $\mathscr{G}=\{\mathscr{A}, \mathscr{E}\}$, which we allow to be

The network

We will represent the network with the graph $\mathscr{G}=\{\mathscr{A}, \mathscr{E}\}$, which we allow to be

■ weighted - links are induced and measured by

$$
g: \mathscr{A} \times \mathscr{A} \mapsto \mathbb{R}^{+}
$$

The network

We will represent the network with the graph $\mathscr{G}=\{\mathscr{A}, \mathscr{E}\}$, which we allow to be
■ weighted - links are induced and measured by

$$
g: \mathscr{A} \times \mathscr{A} \mapsto \mathbb{R}^{+},
$$

- directed - links need not be reciprocal.

The network

We will represent the network with the graph $\mathscr{G}=\{\mathscr{A}, \mathscr{E}\}$, which we allow to be
■ weighted - links are induced and measured by

$$
g: \mathscr{A} \times \mathscr{A} \mapsto \mathbb{R}^{+},
$$

- directed - links need not be reciprocal.

Adjacency matrix

The graph corresponds to the matrix \mathbf{G} with entries given by $g_{i j}=g(i, j)$.

$$
\mathbf{G}=\left[\begin{array}{cccc}
0 & g_{12} & \ldots & g_{1 n} \\
g_{21} & 0 & \ldots & g_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n 1} & g_{n 2} & \ldots & 0
\end{array}\right] .
$$

The normalized adjacency matrix

In practice, a normalized adjacency matrix W is used, such that λ and $\boldsymbol{\theta}$ are identified.

The normalized adjacency matrix

In practice, a normalized adjacency matrix \mathbf{W} is used, such that λ and $\boldsymbol{\theta}$ are identified.

Row normalization

The standard is to transform $\tilde{\mathbf{W}}$ to be row-stochastic, such that $\sum_{j} w_{i j}=1 \forall i$.

$$
\begin{aligned}
\mathbf{G} & =\left[\begin{array}{ccc}
0 & 1.0 & 1.0 \\
0 & 0 & 0.5 \\
0.5 & 0.5 & 0
\end{array}\right], \\
\tilde{\mathbf{W}} & =\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1.0 \\
0.5 & 0.5 & 0
\end{array}\right] .
\end{aligned}
$$

The normalized adjacency matrix

In practice, a normalized adjacency matrix \mathbf{W} is used, such that λ and $\boldsymbol{\theta}$ are identified.

Row normalization

The standard is to transform $\tilde{\mathbf{W}}$ to be row-stochastic, such that $\sum_{j} w_{i j}=1 \forall i$.

Scalar normalization

We will use scalar normalization, such that $w_{i j}=g_{i j} \times \varsigma \forall i, j$, in order to preserve the network structure. \qquad

$$
\begin{aligned}
\mathbf{G} & =\left[\begin{array}{ccc}
0 & 1.0 & 1.0 \\
0 & 0 & 0.5 \\
0.5 & 0.5 & 0
\end{array}\right]=\mathbf{W}, \\
\tilde{\mathbf{W}} & =\left[\begin{array}{ccc}
0 & 0.5 & 0.5 \\
0 & 0 & 1.0 \\
0.5 & 0.5 & 0
\end{array}\right] .
\end{aligned}
$$

Network model - full parameterization

We want to model links, and could do so directly

$$
g_{i j} \sim f(\cdot) \quad \forall i \neq j .
$$

Network model - full parameterization

We want to model links, and could do so directly

$$
g_{i j} \sim f(\cdot) \quad \forall i \neq j .
$$

Essentially, this is the approach of de Paula et al. (2023), who regularize using an elastic net.

At $\mathcal{O}\left(N^{2}\right)$ unknown links, we'd need either
■ repeated observations of the network, or
■ heavy shrinkage to make this work.

Network model - full parameterization

We want to model links, and could do so directly

$$
g_{i j} \sim f(\cdot) \quad \forall i \neq j .
$$

At $\mathcal{O}\left(N^{2}\right)$ unknown links, we'd need either
■ repeated observations of the network, or
■ heavy shrinkage to make this work.
We want to constrain the dimensionality by imposing some structure ${ }^{a}$ on \mathscr{G}, allowing for more nuance where it is needed.

Essentially, this is the approach of de Paula et al. (2023), who regularize using an elastic net.

[^5]
Imposing structure - A (Metric) Space Odyssey

Alternatively, assume that we can locate our agents in some (generalized) metric space ($\mathscr{P}, \mathrm{d}) .{ }^{a}$

[^6]
Imposing structure - A (Metric) Space Odyssey

Alternatively, assume that we can locate our agents in some (generalized) metric space (\mathscr{P}, d). ${ }^{a}$

Then, we can think of links as decaying in the distance between latent positions $P \in \mathbb{R}^{D}$ of agents, e.g.

$$
g_{i j}=\exp \left\{-\mathrm{d}_{i j}\right\} \quad \forall i \neq j .
$$

[^7]
Imposing structure - A (Metric) Space Odyssey

Alternatively, assume that we can locate our agents in some (generalized) metric space (\mathscr{P}, d). ${ }^{a}$

Then, we can think of links as decaying in the distance between latent positions $P \in \mathbb{R}^{D}$ of agents, e.g.

$$
g_{i j}=\exp \left\{-\delta \times \mathrm{d}_{i j}\right\} .
$$

■ We may also consider, e.g., the speed of decay,

[^8]
Imposing structure - A (Metric) Space Odyssey

Alternatively, assume that we can locate our agents in some (generalized) metric space (\mathscr{P}, d). ${ }^{a}$

Then, we can think of links as decaying in the distance between latent positions $P \in \mathbb{R}^{D}$ of agents, e.g.

$$
g_{i j}=\exp \left\{-\delta \times \phi_{i}^{-1} \times \mathrm{d}_{i j}\right\} .
$$

■ We may also consider, e.g., the speed of decay,

- or asymmetries via popularity or gravity.

[^9]
$\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\dot{\mathbf{W}} \mathbf{x} \boldsymbol{\theta}+\mathbf{x} \boldsymbol{\beta}+\mathbf{e}$, where $\mathbf{W}, \dot{\mathbf{W}}=f(\cdot)$

$\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\mathbf{W} \mathbf{X} \boldsymbol{\theta}+\mathbf{X} \boldsymbol{\beta}+\mathbf{e}, \mathbf{w h e r e} \mathbf{W}, \dot{\mathbf{W}}=f(\cdot)$

Nested specifications

Latent positions may be informed by geographical coordinates, by homophilic characteristics, or entirely unknown.

$\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\mathbf{W} \mathbf{X} \boldsymbol{\theta}+\mathbf{X} \boldsymbol{\beta}+\mathbf{e}$, where $\mathbf{W}, \dot{\mathbf{W}}=f(\cdot)$

Nested specifications

Latent positions may be informed by geographical coordinates, by homophilic characteristics, or entirely unknown.

Flexibility

Depending on the setting and available information, we adjust the structure and fix, shrink, or free up parameters.

$$
\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\dot{\mathbf{W}} \mathbf{X} \boldsymbol{\theta}+\mathbf{X} \boldsymbol{\beta}+\mathbf{e}, \text { where } \mathbf{W}, \dot{\mathbf{W}}=f(\cdot)
$$

Nested specifications

Latent positions may be informed by geographical coordinates, by homophilic characteristics, or entirely unknown.

Flexibility

Depending on the setting and available information, we adjust the structure and fix, shrink, or free up parameters.

Estimation or: How I Learned to Stop Worrying and Love MCMC

Adaptive MCMC facilitates full posterior inference, nuanced weakly informative priors improve convergence, and a Gaussian process approximation for costly Jacobians improves speed.

The approach in practice

We'll simulate repeatedly from

$$
\mathbf{y}_{t}=\alpha+\lambda \mathbf{W y}_{t}+\mathbf{x}_{t} \beta+\dot{\mathbf{W}} \mathbf{x}_{t} \theta+\mathbf{e}_{t}, \text { where } \mathbf{x}_{t}, \mathbf{e}_{t} \sim \mathrm{~N}(0,1) .
$$

The networks behind \mathbf{W} stem from

1. distance between US population centers

- sparse/dense, asymmetric/symmetric

2. random Erdős-Rényi graph $-\mathscr{M}_{\text {open }}$.

The approach in practice

We'll simulate repeatedly from

$$
\mathbf{y}_{t}=\alpha+\lambda \mathbf{W} \mathbf{y}_{t}+\mathbf{x}_{t} \beta+\dot{\mathbf{W}} \mathbf{x}_{t} \theta+\mathbf{e}_{t}, \text { where } \mathbf{x}_{t}, \mathbf{e}_{t} \sim \mathrm{~N}(0,1)
$$

The networks behind \mathbf{W} stem from

1. distance between US population centers

■ sparse/dense, asymmetric/symmetric
2. random Erdős-Rényi graph $-\mathscr{M}_{\text {open }}$.

Setup

I'll model the locations, speed of distance-decay, and popularity. The priors will be too flat, and the sampler's initialised first at the true values, then at draws from the prior.

Simulation results - US population

The first network is determined as

$$
g_{i j}=\exp \left\{-\delta_{i} \times \mathrm{d}\left(\underline{\mathbf{p}_{i}}, \underline{\mathbf{p}}_{i}\right)\right\},
$$

where popularity δ_{i} is driven by a state's population, and \mathbf{p}_{i} its population center.

Simulation results - US population

The first network is determined as

$$
g_{i j}=\exp \left\{-\delta_{i} \times \mathrm{d}\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right)\right\},
$$

where popularity δ_{i} is driven by a state's population, and \mathbf{p}_{i} its population center.

I'll start by estimating λ, θ in a long panel ($T=50$) using

- contiguity between states,
- distance-decay between centers, and
- the true model of location \& popularity.

W based on contiguity, distance-decay, and the true network.

Simulation results - the Erdős-Rényi graph

The graph ($N \in\{30,50\}$) is determined as

$$
g_{i j}=\left\{\begin{array}{l}
1 \text { with probability } 0.25 \\
0 \text { otherwise }
\end{array}\right.
$$

Our model uses the same distance-decay specification as before.

A realization of $\mathscr{G}(30,0.25)$.

Simulation results - the Erdős-Rényi graph

The graph $(N \in\{30,50\})$ is determined as

$$
g_{i j}=\left\{\begin{array}{l}
1 \text { with probability } 0.25 \\
0 \text { otherwise }
\end{array}\right.
$$

Our model uses the same distance-decay specification as before.

To highlight convergence, we'll have a look at posteriors of λ for multiple simulations after a short burn-in of 1,000 draws.

A realization of $\mathscr{G}(30,0.25)$.

Connectivity strength $\boldsymbol{\lambda}(\mathrm{N}=30)$

Connectivity strength $\boldsymbol{\lambda}(\mathrm{N}=50)$

Conclusion

- I developed a framework for jointly modelling f and \mathscr{G},

■ that flexibly leverages data, structure, and shrinkage. - It's widely applicable to network and spatial settings

- allowing us to gain deeper insights into spillovers,

Conclusion

■ I developed a framework for jointly modelling f and \mathscr{G},
■ that flexibly leverages data, structure, and shrinkage.

- It's widely applicable to network and spatial settings

- allowing us to gain deeper insights into spillovers,

Conclusion

■ I developed a framework for jointly modelling f and \mathscr{G},
■ that flexibly leverages data, structure, and shrinkage.
■ It's widely applicable to network and spatial settings

- with no, limited, or uncertain information on diverse links,
- allowing us to gain deeper insights into spillovers,

Conclusion

■ I developed a framework for jointly modelling f and \mathscr{G},
■ that flexibly leverages data, structure, and shrinkage.
■ It's widely applicable to network and spatial settings

- with no, limited, or uncertain information on diverse links,
- allowing us to gain deeper insights into spillovers,
- at moderate to pronounced computational costs.

Conclusion

■ I developed a framework for jointly modelling f and \mathscr{G},
■ that flexibly leverages data, structure, and shrinkage.
■ It's widely applicable to network and spatial settings

- with no, limited, or uncertain information on diverse links,
- allowing us to gain deeper insights into spillovers,
- at moderate to pronounced computational costs.

For more details and info on identification, priors, sampling, and applications have a look at the appendix, or coming soon ${ }^{\text {TM }}$ to a repository near you - a draft.

References i

Akcigit, Ufuk, Douglas Hanley, and Nicolas Serrano-Velarde (2021). "Back to basics: basic research spillovers, innovation policy, and growth". In: Review of Economic Studies 88.1, pp. 1-43. ISSN: 0034-6527. DOI: 10.1093/restud/rdaa061.

囲 Alfaro-Ureña, Alonso, Isabela Manelici, and Jose P. Vasquez (2022). "The effects of joining multinational supply chains: New evidence from firm-to-firm linkages". In: Quarterly Journal of Economics 137.3, pp. 1495-1552. ISSN: 0033-5533. DOI: 10.1093/qje/qjac006.

围 Ambrus, Attila and Matt Elliott (2021). "Investments in social ties, risk sharing, and inequality". In: Review of Economic Studies 88.4, pp. 1624-1664. ISSN: 0034-6527. DOI: 10.1093/restud/rdaa073.
Boucher, Vincent and Elysée Aristide Houndetoungan (2023). "Estimating peer effects using partial network data". In: Working Paper.

References ii

 and legislative activity". In: Journal of the European Economic Association 21.3, pp. 1072-1118. ISSN: 1542-4766. DOI: $10.1093 / \mathrm{jeea} / \mathrm{jvac} 051$.

Chetty, Raj et al. (2022). "Social capital I: measurement and associations with economic mobility". In: Nature 608.7921, pp. 108-121. ISSN: 1476-4687. DOI: 10.1038/s41586-022-04996-4.

圊 de Paula, Áureo, Imran Rasul, and Pedro Souza (2023). Identifying network ties from panel data: Theory and an application to tax competition. DOI: 10.48550/arXiv.1910.07452.
囯 Debarsy, Nicolas and James P. LeSage (2022). "Bayesian model averaging for spatial autoregressive models based on convex combinations of different types of connectivity matrices". In: Journal of Business \& Economic Statistics, pp. 1-12. DOI: 10.1080/07350015.2020.1840993.

References iii

雷 Dhyne, Emmanuel et al. (2021). "Trade and domestic production networks". In: Review of Economic Studies 88.2, pp. 643-668. ISSN: 0034-6527. DOI: $10.1093 / r e s t u d / r d a a 062$.
Giovanni, Julian di et al. (2022). "International spillovers and local credit cycles". In: Review of Economic Studies 89.2, pp. 733-773. ISSN: 0034-6527. DOI: $10.1093 / r e s t u d / r d a b 044$.
(Goldsmith-Pinkham, Paul and Guido W. Imbens (2013). "Social networks and the identification of peer effects". In: Journal of Business \& Economic Statistics 31.3, pp. 253-264. DOI: 10.1080/07350015.2013.801251.
(Griffith, Alan (2022). "Name your friends, but only five? The importance of censoring in peer effects estimates using social network data". In: Journal of Labor Economics. DOI: 10.1086/717935.

圊 Herstad, Eyo (2023). "Estimating peer effects and network formation models with missing network links". In: Working Paper.

References iv

T Hoff，Peter D．，Adrian E．Raftery，and Mark S．Handcock（2002）．＂Latent space approaches to social network analysis＂．In：Journal of the American Statistical Association 97．460，pp．1090－1098．ISSN：0162－1459．DOI：10．1198／016214502388618906．
國 Hsieh，Chih－Sheng and Lung Fei Lee（2016）．＂A social interactions model with endogenous friendship formation and selectivity＂．In：Journal of Applied Econometrics 31．2，pp．301－319．DOI： $10.1002 /$ jae． 2426.
围 Lewbel，Arthur，Xi Qu，and Xun Tang（2023）．＂Social networks with unobserved links＂． In：Journal of Political Economy．DOI：10．1086／722090．
䡒 Vom Lehn，Christian and Thomas Winberry（2022）．＂The investment network，sectoral comovement，and the changing U．S．business cycle＂．In：Quarterly Journal of Economics 137．1，pp．387－433．ISSN：0033－5533．DOI：10．1093／qje／qjab020．
－Weidmann，Ben and David J．Deming（2021）．＂Team players：How social skills improve team performance＂．In：Econometrica 89．6，pp．2637－2657．ISSN：1468－0262．DOI： 10．3982／ECTA18461．

References v

围 Zhang, Xinyu and Jihai Yu (2018). "Spatial weights matrix selection and model averaging for spatial autoregressive models". In: Journal of Econometrics 203.1, pp. 1-18. DOI: 10.1016/j. jeconom.2017.05.021.

Model

We are interested in

$$
p(\Theta, \mathscr{E} \mid \mathscr{D}) \propto p(\Theta, \mid \mathscr{E}, \mathscr{D}) \times p(\mathscr{E} \mid \Theta, \mathscr{D}),
$$

or, to be more concrete, in

$$
\begin{aligned}
& \mathbf{y}=(\mathbf{I}-\lambda \mathbf{W})^{-1} \mathbf{z}, \\
& \mathbf{z}=\mathbf{X} \boldsymbol{\beta}+\dot{\mathbf{W}} \mathbf{X} \boldsymbol{\theta}+\boldsymbol{\varepsilon},
\end{aligned}
$$

where $\mathbf{W}=g(\cdot) \varsigma, \dot{\mathbf{W}}=g(\cdot) \dot{\zeta}$, and g is based on a network model of choice. Options include the ones described, many others, or a combination thereof.

Identification

We can identify the parameters $\lambda, \boldsymbol{\theta}$ with mild constraints. Network parameters are generally only weakly identified. We can alleviate this by imposing constraints from the literature or prior information.

Normalization — multiplier effect

Consider a network autoregression

$$
\mathbf{y}=\lambda \mathbf{W} \mathbf{y}+\mathbf{e} .
$$

The following result guarantees stability.

Theorem

Let I denote the identity matrix, and α be a real scalar. Then $\mathbf{I}-\alpha \mathbf{A}$ is stationary for $\alpha \in\left(-\rho_{\mathbf{A}}, \rho_{\mathbf{A}}\right)$, where $\rho_{\mathbf{A}}$ denotes the spectral radius of \mathbf{A}.

By normalizing with the spectral radius (i.e. $\varsigma=\rho_{\mathbf{G}}^{-1}$), we can let $\lambda \in(-1,1)$. This relates λ to the dominant eigenvector of the network, which generally does not coincide with the average partial effect of \mathbf{W}.

Normalization - contextual effect

Consider a contextual model

$$
\mathbf{y}=\lambda \dot{\mathbf{W}} \mathbf{X} \boldsymbol{\theta}+\mathbf{e} .
$$

$$
\frac{\partial \mathbf{z}}{\partial \mathbf{x}_{k}}=\mathbf{I} \beta_{k}+\dot{\mathbf{W}} \theta_{k} .
$$

In this case, we have fewer requirements of the normalization. One sensible option is to fix $\boldsymbol{\theta}$ at the average partial effect of the network characteristics. ${ }^{a}$ We can achieve that by setting $\dot{\mathbf{W}}$ such that it sums to N - we scale with $\dot{\zeta}=\frac{N}{\Sigma_{i} \Sigma_{j} g_{i j}}$.
This applies similarly to the nested linear model when a network multiplier is present.

[^10]
Estimation

For full posterior inference, we extend existing MCMC methods - the central term (suppressing contextual effects) is given by

$$
|\mathbf{S}(\lambda, \cdot)| \exp \left\{-\frac{1}{2 \sigma^{2}}(\mathbf{S}(\lambda, \cdot) \mathbf{y}-\mathbf{x} \boldsymbol{\beta})^{\prime}(\mathbf{S}(\lambda, \cdot) \mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\}
$$

We use Gibbs and Metropolis-Hastings steps, as well as a rejection sampler to draw from the posterior.
where $\mathbf{S}(\lambda, \cdot)=(\mathbf{I}-\lambda \mathbf{W})$ is a spatial filter. The main concerns are essentially computational - we need

1. convergence of parameters,
2. to evaluate the $N \times N$ Jacobian determinant.

Weakly informative priors

We use weakly informative priors to (1) help improve convergence of the MCMC samples, and (2) build a more credible, realistic model.
Two central parameters are λ and $\boldsymbol{\theta}$. For the former, I propose the hierarchical prior

$$
\lambda \sim \operatorname{Beta}(1+\tau, 1+\tau), \quad \tau \sim \text { Gamma }
$$

which adds barely any computational overhead, ${ }^{a}$ but facilitates much better shrinkage towards, e.g., zero, while providing wide support.
For $\boldsymbol{\theta}$, which resembles a standard coefficient, standard global-local shrinkage priors are applicable.

Parameters for the network structure also greatly benefit from weakly informative priors, and even more from actually informative ones. Options for $\boldsymbol{\theta}$ include the Horseshoe, Dirichlet-Laplace, and the Normal-Gamma shrinkage priors.

[^11]
A Beta prior ...

Figure 1: Scaled Beta $(1+\tau, 1+\tau)$ densities with increasing weight, τ.

...with a Gamma mixing distribution

Figure 2: Scaled $\operatorname{Beta}(1+\tau, 1+\tau), \tau \sim \operatorname{Exp}(\beta)$ with increasing weight, $\mathbb{E}[\tau]=1 / \beta$.

Jacobian determinant

In standard models, we'd compute the spectral decomposition of \mathbf{W} once and compute the determinant using \mathbf{W} 's eigenvalues (η_{i}), as

$$
\ln |\mathbf{I}-\lambda \mathbf{W}|=\sum_{i=1}^{N} \ln \left(1-\lambda \eta_{i}\right) .
$$

However, our \mathbf{W} is mutable, and computing eigenvalues for every draw of δ is prohibitive at $\mathcal{O}\left(N^{3}\right)$ complexity.

For models with limited parameters for the network structur, I propose a Gaussian process approximation instead -

$$
|\mathbf{S}(\lambda, \cdot)| \approx \operatorname{GP}(\mu(\lambda, \cdot), \Sigma(\lambda, \cdot)) .
$$

Gaussian process approximation

Figure 3: GP approximation to $|\mathbf{S}(\lambda)|$ using 50 training samples. Distances are between $N=100$ locations with Uniform random coordinates.

$|S| \sim \operatorname{GP}(\lambda, \delta)$, absolute error

Figure 4: GP approximation to $|\mathbf{S}(\lambda, \delta)|$ using 50×20 training samples.

Imposing structure — Links Widely Shut

One way to reduce the dimensionality is by constraining links to only occur within groups. ${ }^{a}$ cobact

[^12]

Imposing structure — Links Widely Shut

One way to reduce the dimensionality is by constraining links to only occur within groups. ${ }^{a}$ cco bade

Country	NUTS 1
Austria	3
Czechia	1
South Germany ${ }^{b}$	$2(16)$
Switzerland	1
Total $\left(N^{2}-N\right)$	42
Grouped $\left(\sum_{i} N_{i}^{2}-N_{i}\right)$	10

[^13]

Imposing structure — Links Widely Shut

One way to reduce the dimensionality is by constraining links to only occur within groups. ${ }^{a}$ cco bade

Country	NUTS 1	NUTS 2
Austria	3	9
Czechia	1	8
South Germany ${ }^{b}$	$2(16)$	11 (38)
Switzerland	1	7
Total $\left(N^{2}-N\right)$	42	1190
Grouped $\left(\sum_{i} N_{i}^{2}-N_{i}\right)$	10	280

[^14]

Simulation results - US centroids

The second network is determined as

$$
g_{i j}=\exp \left\{-\delta \times \mathrm{d}\left(\underline{\mathbf{p}_{i}}, \mathbf{p}_{j}\right)\right\},
$$

where \mathbf{p}_{i} are centroids, and
■ the network is rather dense,
■ I initialize the sampler at random locations to illustrate convergence.

We'll have a look at posteriors of λ for multiple simulations after a short burn-in of 1,000 draws.

```- Go back
```


Coefficient $\beta(N=49)$

Connectivity strength $\lambda(N=49)$

$\boldsymbol{\lambda}$

δ

Figure 5: Traceplots for the posterior draws of λ, δ (note the poor mixing), and the (scaled) coordinates of Kentucky based on $T=3$ network observations.

Figure 6: Traceplots for the posterior draws based on $T=50$ network observations. Note the improved mixing behavior of δ. Go back

[^0]: ${ }^{\text {a }}$ See, e.g., Akcigit et al., 2021; Alfaro-Ureña et al., 2022; Ambrus and Elliott, 2021; Canen et al., 2023; Chetty et al., 2022; Dhyne et al., 2021; Giovanni et al., 2022;
 Vom Lehn and Winberry, 2022; Weidmann and Deming, 2021.

[^1]: ${ }^{\text {a See, e.g., Akcigit et al., 2021; Alfaro-Ureña et al., 2022; Ambrus and Elliott, 2021; }}$ Canen et al., 2023; Chetty et al., 2022; Dhyne et al., 2021; Giovanni et al., 2022;
 Vom Lehn and Winberry, 2022; Weidmann and Deming, 2021.

[^2]: ${ }^{a}$ Including Boucher and Houndetoungan, 2023; Debarsy and LeSage, 2022; de Paula et al., 2023; Goldsmith-Pinkham and Imbens, 2013; Griffith, 2022;
 Herstad, 2023; Hsieh and Lee, 2016; Lewbel et al., 2023; Zhang and Yu, 2018.

[^3]: ${ }^{a}$ Including Boucher and Houndetoungan, 2023; Debarsy and LeSage, 2022; de Paula et al., 2023; Goldsmith-Pinkham and Imbens, 2013; Griffith, 2022; Herstad, 2023; Hsieh and Lee, 2016; Lewbel et al., 2023; Zhang and Yu, 2018.

[^4]: ${ }^{a}$ Including Boucher and Houndetoungan, 2023; Debarsy and LeSage, 2022; de Paula et al., 2023; Goldsmith-Pinkham and Imbens, 2013; Griffith, 2022; Herstad, 2023; Hsieh and Lee, 2016; Lewbel et al., 2023; Zhang and Yu, 2018.

[^5]: ${ }^{a}$ Lewbel et al. (2023), e.g., constrain links to sub-networks. © Illustration

[^6]: ${ }^{a}$ This is rather natural in a spatial setting, and has been used successfully used for modelling social networks (going back to Hoff et al., 2002).

[^7]: ${ }^{a}$ This is rather natural in a spatial setting, and has been used successfully used for modelling social networks (going back to Hoff et al., 2002).

[^8]: ${ }^{a}$ This is rather natural in a spatial setting, and has been used successfully used for modelling social networks (going back to Hoff et al., 2002).

[^9]: ${ }^{a}$ This is rather natural in a spatial setting, and has been used successfully used for modelling social networks (going back to Hoff et al., 2002).

[^10]: ${ }^{a}$ An alternative when some agents are not linked in the network, is the average partial effect for all agents that are linked within the network.

[^11]: ${ }^{a}$ Thanks to a rejection sampler based on a Gamma proposal density.

[^12]: ${ }^{a}$ This is essentially the approach of Lewbel et al., 2023.

[^13]: ${ }^{a}$ This is essentially the approach of Lewbel et al., 2023.
 ${ }^{b}$ Thanks for nothing, re-unification.

[^14]: ${ }^{a}$ This is essentially the approach of Lewbel et al., 2023.
 ${ }^{b}$ Thanks for nothing, re-unification.

