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People

I’m Nikolas and I’m a PhD student at WU.
My interest in econometric methods is twofold — I
1. apply them to environmental and development issues,
2. develop them to help learn more from our data and environment.

E.g., I study deforestation and model the spillover effects behind it.

If you have any questions you can send me a mail or ask after class.

Tutor
We also have a tutor in Maximilian Heinze, who you can contact via mail if you have
any questions or issues related to this class.

He will also hold tutorial sessions to help you with prerequisites.

2/324

mailto:nikolas.kuschnig@wu.ac.at
mailto:maximilian.marius.heinze@wu.ac.at


People

I’m Nikolas and I’m a PhD student at WU.
My interest in econometric methods is twofold — I
1. apply them to environmental and development issues,
2. develop them to help learn more from our data and environment.

E.g., I study deforestation and model the spillover effects behind it.

If you have any questions you can send me a mail or ask after class.

Tutor
We also have a tutor in Maximilian Heinze, who you can contact via mail if you have
any questions or issues related to this class.

He will also hold tutorial sessions to help you with prerequisites.

3/324

mailto:nikolas.kuschnig@wu.ac.at
mailto:maximilian.marius.heinze@wu.ac.at


Organisation



Plan

Weekly class (attendance is compulsory)
schedule on vvz.wu.ac.at

Assessment in three parts (each part must be positive)
30% — assignments
30% — midterm exam (2022‐12‐13)
40% — final exam (2022‐01‐24)

Grades are distributed as follows
[90, 100] → 1
[78, 89] → 2
[65, 77] → 3
[51, 64] → 4
[0, 50] → 5
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Outline

In the lectures, we will focus on causal inference. This means we have to cover a lot of
(dry) theory — the assignments are designed for you to apply your knowledge to actual
data, and incentivise you to think about prediction as well.

The midterm exam in December will cover theoretical underpinnings, the final exam in
January will test your overall understanding.

Figure 1: <xkcd.com> on causality versus correlation.
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Forecasting competition

Econometrics is also useful for prediction.

You can learn a lot about prediction via trial‐and‐error, so
to facilitate that there will be a voluntary forecast competition.

You can find out more about the rules at kaggle.com/c/econometrics‐2‐w22; for now
you should know that you will be able to earn bonus points on two deadlines:

First round Second round
2022‐12‐08 2023‐01‐16

2 pts for places 1–3 4 pts for 1st
1 pt for places 4–10 3 pts for 2nd

2 pts for 3rd
1 pt for 4th
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Course requirements

You are expected to have prior knowledge of the following topics:

multiple regression (application, interpretation),

estimators (least squares, classical assumptions, estimator properties),

regression inference (hypothesis testing, confidence intervals),

assumption failures (heteroskedasticity, correlation),

functional forms (dummy variables, interactions, log).

These are covered in Econometrics I and you should have a solid understanding of
them. It also helps to have working knowledge of R, e.g. from the Statistics with R
course or the tutorial.
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Study goals

After this course you should be

equipped to independently conduct econometric analyses.

aware of modelling pitfalls and how to address them.

have a solid understanding of causal inference — i.e. you will know

under which conditions we can interpret something causally,

how you could induce these conditions.

critically read and review applied research.
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Materials

You only need the slides and material from class for this course. However, there’s a lot
of useful material that you can find online or in a library. For now, the following
material might be interesting.

Stock, J. H., and M. W. Watson (2015). Introduction to Econometrics. Book.
Hanck, C., Arnold, M., Gerber, A., and Schmelzer, M. (2021). Introduction to
Econometrics with R. Ebook.

Wooldridge, J. (2015). Introductory Econometrics: A Modern Approach. Book.
Gelman, A., Hill, J., and Vehtari, A. (2021). Regression and Other Stories. Book.
Cunningham, S. (2021). Causal Inference: The Mixtape. Ebook.
Venables, W. N., and D. M. Smith (2010). An Introduction to R. Ebook.
Lambert, B. (2014). A Full Course in Undergraduate Econometrics. YouTube Playlist
(Part 1, Part 2).
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An introduction to statistical learning



An introduction to statistical learning

We observe the samples 𝐲 ∈ ℝ𝑁 (the dependent) and 𝐗 = (𝐱1, … , 𝐱𝐾 ) ∈ ℝ𝑁×𝐾 (the
independent variables), and assume that there is some relationship

𝐲 = 𝑓 (𝐗) + 𝐞.

The unknown function 𝑓 represents information that 𝐗 provides about 𝐲; all other
relevant information is represented by the error term 𝐞.

Naming conventions
The vector 𝐲 is called dependent, response, or output variable and could, e.g., be
income. The matrix 𝐗 contains independent, explanatory, control, or predictor
variables, or features. These could, e.g., be occupation and ability.
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Why statistical learning?

We want an estimate ̂𝑓 for two main reasons —

1. prediction — we want to learn about 𝑌 beyond our sample 𝐲,
2. inference — we want to learn about the relation 𝑓 between 𝑌 and 𝑋 .

Figure 2: What can be learned from the data in this <xkcd.com> comic?
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Prediction

Often, we can’t obtain new observations of 𝐲, but we can use other data 𝐗 to predict
new values of 𝑌 . We use our estimate ̂𝑓 to obtain an estimate as

𝐲̂ = ̂𝑓 (𝐗).

The ̂hat indicates an estimate, so 𝐲̂ is our in‐sample estimate of 𝐲. With new data 𝐗̃ we
can get an out‐of‐sample estimate, i.e. a prediction.

For prediction, ̂𝑓 can be a black box — as long as it works, we don’t need to know how.

Example
Spotify may want to predict a (new) song that you would like to listen to. More
concretely, they want to predict how to keep you engaged with Spotify.
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Two important concepts in prediction

The accuracy of a prediction depends on the reducible error and irreducible error.

Reducible error stems from imperfect estimates of 𝑓 , i.e.

̂𝑓 ≈ 𝑓 .

Irreducible error are elements of 𝐲 that can’t be explained by 𝐗. These elements
are contained in the error term 𝐞, of

𝐲 = 𝑓 (𝐗) + 𝐞.

Example
The Spotify algorithm can always be improved, but it cannot define you.
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Decomposing predictive accuracy

We can decompose the mean squared loss into two parts.

𝔼􏿮(𝐲 − 𝐲̂)2􏿱 = 𝔼􏿮𝑓 (𝐗) + 𝐞 − ̂𝑓 (𝐗)􏿱
2

= 𝔼􏿯􏿮𝑓 (𝐗) − ̂𝑓 (𝐗)􏿱
2
􏿲 + 𝕍(𝐞).

= Bias 􏿴 ̂𝑓 (𝐗)􏿷
2
+𝕍􏿴 ̂𝑓 (𝐗)􏿷 + 𝕍(𝐞) .

We have the reducible error from our estimate ̂𝑓 that can be improved,

and divided into the squared bias of our estimate ̂𝑓 ,

and the variance of our model ̂𝑓 . See the steps

and the irreducible error from 𝐞 that caps our accuracy. See the steps
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Overfitting and underfitting

For good prediction we want to minimise the reducible error — we do this by balancing
the bias and the variance of our model ̂𝑓 . A useful distinction is between

underfitting — ̂𝑓 is not flexible enough to fit the data,
overfitting — ̂𝑓 follows the data (including irreducible errors) too closely.

Underfitting model
high bias

Overfitting model
high variance

Perfectly balanced,
as all things should be

Model bias and variance
We are talking about the bias and variance of a model ̂𝑓 , not a parameter (e.g. 𝛽̂).
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Inference

We want to learn about the relationship between random variables 𝑌 and 𝑋 . We need
to understand our model ̂𝑓 to answer e.g. one of the following questions.

Are 𝑋 and 𝑌 correlated?
What happens if we increase 𝑋 by ten percent?
Did the reduction in 𝑋 cause higher 𝑌?
How does ̂𝑓 map 𝑋 to 𝑌?

Examples

cancer ∼ smoking income ∼ discrimination grade ∼ time studying

prosperity ∼ embargo malaria ∼ insecticide use
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Causality

Many of these questions are causal — we want to learn about causal effects.

Consider the effect of a binary (i.e. yes or no) treatment 𝑋 ∈ {0, 1} on an outcome 𝑌 .
We can define the potential outcomes 𝑌(1) for treatment 𝑋 = 1 and 𝑌(0) otherwise.
The difference gives us the causal effect of 𝑋 on 𝑌

causal effect = 𝑌(1) − 𝑌(0).

The fundamental problem of causal inference
In the real world, we only ever observe 𝑌(1) or 𝑌(0). The other one is an unobserved
counterfactual.
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Hurdles to causal inference

To uncover causal effects, we need to sidestep the fundamental problem of causal
inference somehow. There’s many challenges, but we’ll definitely need

1. a definition of what constitutes a causal effect,
2. the right data, and the right model.

Example— discrimination
Income may be driven by discrimination
(e.g. gender), but also experience or
occupation. These factors could also be a
pathway for discrimination.

Example— health
Non‐smokers may be more conscious of
their health than smokers — this may lead
to lower cancer rates for reasons other
than smoking.
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Models of 𝑓

To learn about 𝑓 , we need a model that suits the issue and the data — we care about,
e.g., flexibility and interpretability — and a suitable way to estimate this model.

Some ways to characterise models is to distinguish between

parametric ( ̂𝑓 has a finite number of parameters) and non‐parametric,
supervised and unsupervised (we don’t have access to 𝐲),
regression (𝐲 is quantitative) and classification (𝐲 is qualitative).

“All models are wrong, but some are useful.’’ — George Box
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Onmodels

Models are an approximation of reality that allows us to learn about it.

Figure 3: <xkcd.com>
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Linear models

Linear models impose a certain parametric form on 𝑓 . The dependent 𝐲 should be a
linear combination of 𝐗, with parameters 𝛼 ∈ ℝ, 𝜷 ∈ ℝ𝐾 , as in

𝑓 (𝐗) = 𝛼 + 𝛽1𝐱1 + … + 𝛽𝐾𝐱𝐾 .

This way, we only need to estimate 𝐾 + 1 parameters, which is usually

1. easy to do (e.g. using least squares),
2. easy to interpret (the partial effect of 𝐱𝑗 is 𝛽𝑗),

and often yields good results that are not prone to overfitting (they usually don’t follow
the data too closely). In other cases, the linearity assumption may be too restrictive,
and ̂𝑓 may be far from the true 𝑓 .
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Non-parametric models

Non‐parametric models do not impose a structure on 𝑓 a‐priori — instead, the
structure is determined by fitting as close as possible to the data under certain other
constraints. These methods can generally

1. fit a wide range of possible forms of 𝑓 ,
2. tend to fit better to the data, and
3. are less reliant on model building.

However, non‐parametric methods may require a lot more data, tend to be harder to
interpret, and are susceptible to overfitting.

Counterintuitively, “non‐parametric” does not imply that there are no parameters. Instead,
the number and type of parameters are flexible (and potentially infinite).
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Parametric versus non-parametric model fit

We simulate some data from 𝑌 ≈ sin𝑋 and compare model fit.

t-12 t-8 t-4 t t+4

-2
-1

0
1

2

Simulated sample Out-of-sample

Figure 4: Parametric, non‐parametric, and the true model 𝐲 = sin(𝐱) + 𝐞.
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Parametric versus non-parametric model fit

Here, we fit two linear models — (1) 𝐲 ≈ 𝐱𝛽1, and (2) 𝐲 ≈ 𝐱1𝛽1 +⋯+ 𝐱6𝛽6.

t-12 t-8 t-4 t t+4

-2
-1

0
1

2

Linear models

Figure 4: Parametric, non‐parametric, and the true model 𝐲 = sin(𝐱) + 𝐞.
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Parametric versus non-parametric model fit

Here, we fit two splines, with six and 100 degrees of freedom to the data.

t-12 t-8 t-4 t t+4

-2
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0
1

2

Smoothing splines

Figure 4: Parametric, non‐parametric, and the true model 𝐲 = sin(𝐱) + 𝐞.
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Parametric versus non-parametric model fit

t-12 t-8 t-4 t t+4

-2
-1

0
1

2

True (linear) model

Figure 4: Parametric, non‐parametric, and the true model 𝐲 = sin(𝐱) + 𝐞.
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Supervised versus unsupervised

Unsupervised methods learn patterns from data without a tagged outcome 𝑌 via
mimicry. Two examples are the deep learning models DALL⋅E and GPT3.

Image creation
> An astronaut, riding a horse in

a photorealistic style (Source).

Text creation
> Write a greentext story (Source).

> be me
> bottomless pit supervisor
> in charge of making sure the bottomless pit is, in fact,
bottomless
> occasionally have to go down there and check if the
bottomless pit is still bottomless
> one day i go down there and the bottomless put is no longer
bottomless
> the bottom of the bottomless pit is now just a regular pit
> distress.jpg
> ask my boss what to do
> he says "just make it bottomless again"
> i say "how"
> he says "i don't know, you're the supervisor"
> rage.jpg
> quit my job
> become a regular pit supervisor
> first day on the job, go to the new hole
> it's bottomless
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Interpretability versus flexibility
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Figure 5: The interpretability–flexibility trade‐off of methods, following James et al. (2021).
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Choosing a suitable approach

We choose a model and estimation method depending on the issue of interest, and the
available data. Central questions we may ask ourselves include the following.

What is the goal of our analysis?
How easy to interpret should our estimate ̂𝑓 be?
Do we need to generate accurate predictions?

What does our data look like?
How much data do we have (observations𝑁 , and covariates 𝐾 )?
Are we dealing with a regression or classification problem?
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The role of econometrics

Econometrics seeks to apply and develop statistical methods to learn about economic
phenomena using empirical data.

Economics Statistics

Figure 6: Econometrics lies at the intersection of economics and statistics.
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An empirical shift

Econometrics plays an important role in an empirical shift in economic research, away
from pure theory (Angrist et al. 2017; Hamermesh 2013). Today, economic theories
are routinely confronted with real‐world data.

“Experience has shown that each […] of statistics, economic theory, and mathematics, is
a necessary […] condition for a real understanding of the quantitative relations in modern
economic life.’’ — Ragnar Frisch (1933)
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Empirical publications over time

Figure 7: Weighted share of empirical publication in various economic fields (Angrist et al. (2017)).
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A credibility revolution

Data and statistical methods are not a panacea. Econometrics has seen considerable
challenges and developments since its inception. Important milestones concern

uncertainty around model choice (e.g. Leamer 1983; Steel 2020),
better research designs (e.g. Angrist and Pischke 2010),
randomised experiments (see Athey and Imbens 2017),
more flexible methods (Athey and Imbens 2019).

Many milestones build on some rather intuitive ideas; many open issues remain.
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The econometric workhorse model

Consider how to transform the following economic model into an econometric model

wage ≈ 𝑓 (education, experience).

A sensible choice might be the following linear regression model

𝐲𝑤𝑎𝑔𝑒 = 𝐱𝑒𝑑𝑢1 𝛽1 + 𝐱𝑒𝑥𝑝2 𝛽2 + 𝐞.

Linear models
Linear models are arguably the workhorse models of econometrics — they are valued
for their interpretability, parsimony, and extensibility.
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54/324



Goals of econometrics

The linear model’s popularity is not surprising, given the classical tasks:

testing a theory — Does class size affect grades?,
evaluating a policy — What are impacts of an oil embargo?,
forecasting the future — How quickly do stocks go up?

The central task is arguably distilling causal effect from observational data, since
experimental data is rare (why?). When forecasting, economic theory can provide us
with valuable structural information (for example?).

As you know by now— correlation does not need to imply causation. Consider the relation
of sunburns and ice cream consumption (or one of many more examples).
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Linear algebra and the linear model

The linear model is an essential building block, and linear algebra gives us a very
convenient way of expressing and dealing with these models. Let

𝐲 = 𝐗𝛽 + 𝐞,

where the𝑁 × 1 vector 𝐲 holds the dependent variable for all𝑁 observations, and the
𝑁 × 𝐾 matrix 𝐗 contains all 𝐾 explanatory variables. That is

⎛
⎜
⎜
⎜
⎜
⎝

𝑦1
𝑦2
⋮
𝑦𝑁

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑥11 𝑥12 … 𝑥1𝐾
𝑥21 𝑥22 … 𝑥2𝐾
⋮ ⋮ ⋱ ⋮

𝑥𝑁1 𝑥𝑁2 … 𝑥𝑁𝐾

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝛽1
𝛽2
⋮
𝛽𝐾

⎞
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎝

𝑒1
𝑒2
⋮
𝑒𝑁

⎞
⎟
⎟
⎟
⎟
⎠

.
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The ordinary least squares estimator

The ordinary least squares (OLS) estimator minimises the sum of squared residuals,
which is given by 𝐞′𝐞 (i.e.∑𝑁

𝑛=1 𝑒2𝑛). To find the estimate 𝜷𝑂𝐿𝑆 we

1. re‐express the sum of squared residuals,

2. find an extreme value via the partial derivative (𝜕𝐞
′𝐞

𝜕𝜷 = 0),
3. check whether we found a minimum via the second partial derivative.

𝐞′𝐞 = (𝐲 − 𝐗𝜷)′(𝐲 − 𝐗𝜷)

= 𝐲′𝐲 − 2𝜷′𝐗′𝐲 + 𝜷′𝐗′𝐗𝜷.
𝜕𝐞′𝐞
𝜕𝜷 = −2𝐗′𝐲 + 2𝐗′𝐗𝜷, 𝜕2𝐞′𝐞

𝜕2𝜷 = 2𝐗′𝐗.

The estimator 𝜷𝑂𝐿𝑆 = (𝐗′𝐗)−1𝐗′𝐲 is directly available and a minimum. Show details
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Reducible and irreducible error— decomposition steps

We have 𝐲 = 𝑓 (𝐗) + 𝐞, 𝐲̂ = ̂𝑓 (𝐗), and 𝔼[𝐞] = 0. Recall that𝕍(𝐞) = 𝔼􏿮(𝐞 − 𝔼[𝐞])2􏿱.

𝔼􏿮(𝐲 − 𝐲̂)2􏿱 = 𝔼􏿮𝑓 (𝐗) + 𝐞 − ̂𝑓 (𝐗)􏿱
2

= 𝔼􏿮􏿴𝑓 (𝐗) − ̂𝑓 (𝐗)􏿷 + 𝐞􏿱
2

move terms and square

= 𝔼􏿯􏿴𝑓 (𝐗) − ̂𝑓 (𝐗)􏿷
2
+ 2𝐞 􏿴𝑓 (𝐗) − ̂𝑓 (𝐗)􏿷 + 𝐞2􏿲

= 𝔼􏿯􏿴𝑓 (𝐗) − ̂𝑓 (𝐗)􏿷
2
􏿲 + 𝔼􏿮2𝐞 􏿴𝑓 (𝐗) − ̂𝑓 (𝐗)􏿷􏿱 + 𝔼􏿮𝐞2􏿱

= 𝔼􏿯􏿴𝑓 (𝐗) − ̂𝑓 (𝐗)􏿷
2
􏿲 + 0 + 𝔼􏿮𝐞2􏿱 simplify

= 𝔼􏿯􏿴𝑓 (𝐗) − ̂𝑓 (𝐗)􏿷
2
􏿲 + 𝕍(𝐞) .

Go back
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Bias and variance— decomposition steps

We will use the shorthands 𝑓 = 𝑓 (𝐗), and ̂𝑓 = ̂𝑓 (𝐗). Recall that Bias 􏿴 ̂𝑓 􏿷 = 𝔼􏿮 ̂𝑓 􏿱 − 𝑓 .

𝔼􏿮(𝐲 − 𝐲̂)2􏿱 = 𝔼􏿯􏿴𝑓 − ̂𝑓 􏿷
2
􏿲 + 𝕍(𝐞)

= 𝔼􏿯􏿴𝑓 − 𝔼􏿮 ̂𝑓 􏿱 + 𝔼􏿮 ̂𝑓 􏿱 − ̂𝑓 􏿷
2
􏿲 + 𝕍(𝐞) add 0 = (𝔼􏿮 ̂𝑓 􏿱 − 𝔼􏿮 ̂𝑓 􏿱)

= 𝔼􏿯􏿴􏿴𝑓 − 𝔼􏿮 ̂𝑓 􏿱􏿷 + 􏿴𝔼􏿮 ̂𝑓 􏿱 − ̂𝑓 􏿷􏿷
2
􏿲 + 𝕍(𝐞) square the terms

= 􏿴𝑓 − 𝔼􏿮 ̂𝑓 􏿱􏿷
2
+ 𝔼􏿮2 􏿴𝑓 − 𝔼􏿮 ̂𝑓 􏿱􏿷 × 􏿴𝔼􏿮 ̂𝑓 􏿱 − ̂𝑓 􏿷􏿱 + 𝔼􏿯􏿴𝔼􏿮 ̂𝑓 􏿱 − ̂𝑓 􏿷

2
􏿲 + 𝕍(𝐞)

= 􏿴𝑓 − 𝔼􏿮 ̂𝑓 􏿱􏿷
2
+ 0 + 𝔼􏿯􏿴𝔼􏿮 ̂𝑓 􏿱 − ̂𝑓 􏿷

2
􏿲 + 𝕍(𝐞) simplify

= Bias 􏿴 ̂𝑓 􏿷
2
+𝕍􏿴 ̂𝑓 􏿷 + 𝕍(𝐞) .

Go back
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OLS estimator— derivation

We have 𝐲 = 𝐗𝜷 + 𝐞, which lets us re‐express the sum of squared residuals as

𝐞′𝐞 = (𝐲 − 𝐗𝜷)′(𝐲 − 𝐗𝜷) = (𝐲′ − 𝜷′𝐗′)(𝐲 − 𝐗𝜷)
= 𝐲′𝐲 − 𝐲′𝐗𝜷 − 𝜷′𝐗′𝐲 + 𝜷′𝐗′𝐗𝜷
= 𝐲′𝐲 − 2𝜷′𝐗′𝐲 + 𝜷′𝐗′𝐗𝜷,

where we use the fact that for a scalar 𝛼 = 𝛼′ to simplify 𝐲′𝐗𝜷 = (𝐲′𝐗𝜷)′ = 𝜷′𝐗′𝐲.
Next, we set the first derivative 𝜕𝐞′𝐞

𝜕𝜷 = −2𝐗′𝐲 + 2𝐗′𝐗𝜷 to zero

−2𝐗′𝐲 + 2𝐗′𝐗𝜷 = 0
𝐗′𝐗𝜷 = 𝐗′𝐲

𝜷 = (𝐗′𝐗)−1 𝐗′𝐲.

The second partial derivative 2𝐗′𝐗 is positive (definite) as long as it is invertible.

Go back
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Causality



Causality

Causality is when one cause leads to some effect. The cause is partly responsible for
the effect, and the effect partly depends on the cause. Questions of causality are of a
philosophical nature, so a well‐defined framework is important for discussions.

Consider a binary treatment (e.g. vaccination) 𝑋 , and outcome (e.g. immunity) 𝑌 . We
can think of the causal effect 𝜏 as the difference in potential outcomes

𝜏 = 𝑌(𝑋 = 1) − 𝑌(𝑋 = 0)
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The fundamental problem of causal inference

In the real world only one outcome is realised; the other is a counterfactual. We have
to estimate this ‘missing’ outcome to learn about the causal effect.

𝑖 𝑋𝑖 𝑌𝑖 𝑌𝑖(1) 𝑌𝑖(0)

1 0 1 ? 1
2 0 1 ? 1
3 1 1 1 ?
4 1 0 0 ?
⋮
𝑁 1 1 1 ?

The potential outcomes framework is also called the Neyman–Rubin causal model.
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Causal identification

We say an effect (estimate) is causally identified if we can interpret it causally in our
chosen framework and scope — communicating the framework and scope is vital.

Studying Income

Ability

We may want to estimate a causal effect from 𝐲𝑖𝑛𝑐 = 𝐱𝑠𝑡𝑢𝑑𝑦𝛽 + 𝐞.
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Causal identification

We say an effect (estimate) is causally identified if we can interpret it causally in our
chosen framework and scope — communicating the framework and scope is vital.

Studying IncomeSkillset

Ability

However, you don’t get paid directly for studying — skills are a mediator.
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Causal identification

We say an effect (estimate) is causally identified if we can interpret it causally in our
chosen framework and scope — communicating the framework and scope is vital.

Studying IncomeSkillset

Ability

Morever, ability may confound your effect estimates of 𝐲𝑖𝑛𝑐 = 𝐱𝑠𝑡𝑢𝑑𝑦𝛽 + 𝐞.

74/324



Important causal quantities

Average treatment effect
The average causal effect is simply the mean of all treatment effects.

𝜏𝐴𝑇𝐸 = 𝔼[𝜏𝑖]
= 𝔼[𝑌(1) − 𝑌(0)] = 𝔼[𝑌(1)] − 𝔼[𝑌(0)] .

Conditional average treatment effect
Often, we want to control for some third characteristic 𝑍𝑖

𝜏𝐶𝐴𝑇𝐸 = 𝔼[𝜏𝑖|𝑍𝑖 = 𝑧] .

A special case is the average treatment effect on the treated (ATT) where we
condition on received treatment, 𝑍𝑖 = 𝑋𝑖 = 1.
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Estimating an average treatment effect

𝑖 𝑋𝑖 𝑌𝑖 𝑌𝑖(1) 𝑌𝑖(0)

1 0 1 – 1
2 0 0 – 0
3 0 0 – 0
4 0 0 – 0
5 1 1 1 –
6 1 1 1 –
7 1 1 1 –
8 1 0 0 –

We could use 𝔼[𝑌𝑖(0)] = 0.25 and
𝔼[𝑌𝑖(1)] = 0.75, for

𝜏𝐴𝑇𝐸 = 𝔼[𝑌𝑖(1)] − 𝔼[𝑌𝑖(0)] = 0.5.

We can also impose a linear model

𝐲 = 𝐱𝜏 + 𝐞,

and estimate 𝜏𝐴𝑇𝐸 using OLS.
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Ignorability

Ignorability
A treatment 𝑋 is ignorable if

(𝑌(1), 𝑌(0))⟂⟂𝑋.

This means that both potential outcomes are independent of 𝑋 , the treatment.

When 𝑋 is ignorable, the treatment is randomly assigned and only affects the outcome
𝑌 by either realising 𝑌(1) or 𝑌(0), i.e.

𝑌 = 𝑌(1)𝑋 + 𝑌(0)(1 − 𝑋).

Example
The assignment of 𝑋 should be ignorable — this is violated if, e.g., subjects are
targeted (for vaccination), or select themselves (by responding to a survey).
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Conditional ignorability

Conditional ignorability
A treatment 𝑋 is ignorable, conditional on covariates 𝑍, if

1. (𝑌(1), 𝑌(0))⟂⟂𝑋|𝑍.

2. ℙ(𝑋 = 1) ∈ (0, 1).

Potential outcomes are independent of 𝑋 , conditional on 𝑍, and there are both
treated and untreated subjects.

If 𝑋 is ignorable, we can use the sample averages 𝔼[𝑌𝑖(0)] and 𝔼[𝑌𝑖(1)] as estimates
for 𝑌(0) and 𝑌(1) — the estimate of 𝜏𝐴𝑇𝐸 will be causally identified See the proof .
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Randomised experiments

We learned that we can estimate a causal effect if

1. we have access to parallel universes (we can compare 𝑌(1) and 𝑌(0)), or
2. the treatment is ignorable (we can compare the sample averages).

Until we figure out the first option, experiments (natural or designed), where the
treatment is truly assigned randomly, are our best shot. However, even with properly
randomised data, there are threats to causal inference.

Experiments are not always feasible, because (inter alia) they are expensive and often
morally problematic. Thankfully, they’re not our only option.
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Balance and Overlap

Assume that you have perfectly randomised data to investigate the effect of some
treatment 𝑋 — the treatment and control groups were assigned randomly.

For good inference, we want the treatment and control groups to be comparable, i.e.
balance and
overlap between the groups.

If the groups are imbalanced or there is a lack of overlap, we are forced to rely more on
our model and assumptions, and less on the data.
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Imbalance

An imbalance between the treated and control groups occurs when there are
differences between these groups. This is problematic when there are differences in
terms of third variables that affect the outcome 𝑌 .

If we have enough (e.g.∞) data, these imbalances should disappear. Otherwise, we
may want to account for them before comparing sample means of the groups.

Example— vaccination

You run an experiment to learn about
the efficacy of vaccination and collect
the randomised data to the right.
What do you have to watch out for?

𝑁𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑁𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑁𝑡𝑜𝑡𝑎𝑙

55 45 100
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Spotting imbalances
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Overlap

The overlap describes how similar the range of the data is across groups. A lack of
overlap means that there are no equivalents in the two groups (e.g. someone aged 90+)
and we may have to extrapolate beyond the support of the data.
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Experimental design— blocked experiments

When designing an experiment, we can use prior information to get more precise and
accurate estimates — consider the vaccine efficacy experiment.

We know that age probably plays an important role.

We could divide the data into blocks.

Subjects in a block should have similar age.

Random assignment of the treatment happens within blocks.

We minimise issues with balance and overlap by running many small experiments.
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Estimates from a blocked experiment

If we conduct an experiment with 𝐵 blocks, we can estimate the average treatment
effect within a blockℬ𝑏 by comparing the sample averages

𝜏̂𝑏𝐴𝑇𝐸 = 𝔼􏿮𝑌𝑗(1)􏿱 − 𝔼􏿮𝑌𝑗(0)􏿱 where 𝑗 ∈ ℬ𝑏.

For an estimate of the overall average treatment effect, we take a weighted average

𝜏̂𝐴𝑇𝐸 =
∑𝑖𝑁𝑖𝜏̂𝑖
∑𝑖𝑁𝑖

,

where𝑁𝑖 is the size of blockℬ𝑖, or estimate a regression with block indicators

𝑦𝑖 = 𝛼 + 𝑥𝑖𝜏𝐴𝑇𝐸 + 𝟙(𝑖 ∈ ℬ1)𝛾1 +⋯+ 𝟙(𝑖 ∈ ℬ𝐵)𝛾𝐵 + 𝑒𝑖.
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A blocked experiment visualised

Everyone

ℬ1, 𝑁1 = 5

Randomise

ℬ2, 𝑁2 = 20

Randomise

ℬ3, 𝑁3 = 75

Randomise

Treatment Control

𝑎𝑔𝑒
< 18 𝑎𝑔𝑒 > 69
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A note on randomisation and controls

control treated

20
k

30
k

40
k

Income ~ Treatment
τ̂  = 0.6k (0.3)

We evaluate a randomised
experiment on the income
effects of some treatment.

We also have information on
age and education — how
should we proceed?
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Controlling for covariates
can help improve the
efficiency of estimates.
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A note on randomisation and controls

control treated

20
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k

Income ~ Treatment
τ̂  = 0.6k (0.3)

Controlling for covariates
can also bias estimates.

These covariates may still
carry useful information.

causal inference ≠ prediction
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Recap and outline

To identify a causal effect, the treatment should be ignorable.
This can be achieved in experiments with randomly assigned treatment.

Causal identification is hard — a lot can go wrong, e.g.:

imbalance, which can mislead us,
lack of overlap, which limits what we can learn,
problematic controls, which can distort causal effects.

Before we get to observational data, we will proceed with

1. a graphical framework to think about causality, and then
2. look into some more threats to causal inference.
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Ignorability and identification

Theorem
If 𝑋 is ignorable conditional on 𝑍, then

𝔼[𝜏] = 􏾜
𝑧∈ supp𝑍

(𝔼[𝑌|𝑋 = 1, 𝑍 = 𝑧] − 𝔼[𝑌|𝑋 = 0, 𝑍 = 𝑧]) ℙ(𝑋 = 𝑥) .

Proof: We know that 𝔼[𝑌(0)|𝑍] = 𝔼[𝑌(0)|𝑋 = 0, 𝑍] = 𝔼[𝑌|𝑋 = 0, 𝑍] by the
ignorability of 𝑋 , meaning we can treat counterfactuals and realised outcomes
interchangeably, conditional on 𝑍. The rest follows by the law of iterated
expectations.

This implies that we can use averages to estimate counterfactuals.

Go back
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Causality and graphs



The directed acyclic graph

A directed acyclic graph (DAG) is a

fancy flowchart
type of graph that we can use as a tool for causal modelling.

Econometrics ? Profit
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One slide of graph theory

A graph 𝐺(𝒩,ℰ) consists of a set of nodes𝒩 = {1,… ,𝑁} , and a set
of edges ℰ = 􏿺{𝑖, 𝑗}, {𝑘, 𝑙}, … 􏿽 , for 𝑖, 𝑗, 𝑘, 𝑙 ∈𝒩 between nodes.

In a directed graph, the set of edges is ordered — edges go from a tail
to a head node. This means that {𝑖, 𝑗} ≠ {𝑗, 𝑖}.

A walk is a sequence of edges which joins a sequence of nodes.
A cycle is a walk where all edges are distinct and the first and the last
node are equal. A graph without cycles is an acyclic graph.

𝑖 𝑗

𝑘

􏿺𝑖, 𝑗􏿽

{𝑖, 𝑘}

𝑖 𝑗
􏿺𝑗, 𝑖􏿽

𝑎

𝑏 𝑐 𝑥
𝑦

Because this isn’t confusing enough, nodes are also referred to (inter alia) as ‘vertices’,
‘agents’, or ‘points’. Edges are also called ‘links’, ‘connections’, or ‘lines’.
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Back to the DAG

DAGs have three layers of information that we can use:

1. nodes, to represent random variables,
2. directed edges that represent a causal effect,
3. missing edges, indicating the assumption of no causal effect.

A B C D

E

Keep in mind that missing information can still be information.
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DAGs and causal inference

DAGs are another framework for causal inference (similar to the potential outcomes
framework that we already covered) that can be very helpful. They

visualise causal relationships between a number of variables,
allowing us to transparently state our assumptions,

help us identify a causal effect,
showing which variables to control for to estimate the effect.

These types of graphs are commonly used to model many different kinds of information.
Examples include family trees, version control systems, citations, project management,
and object‐oriented programs.
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The basics of causal inference with DAGs

We want to learn about a causal effect of education on income. Let 𝑌 be income, 𝑋
indicate participation in a course, and𝑈 be a measure of aptitude.

Let’s construct a DAG to help isolate the causal effect of 𝑋 on 𝑌 .

1. Is 𝑌 related to𝑈?
2. Is 𝑋 related to𝑈? Can we randomise treatment?
3. Are there other important variables?

It turns out that there are two paths from 𝑋 to 𝑌 ,
1. one direct path 𝑋 → 𝑌 , and
2. one backdoor path 𝑋 ← 𝑈 → 𝑌 .

𝑋 𝑌

𝑈

??
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Confounders and open backdoors

In our DAG, where we want to isolate 𝑋 → 𝑌 , we have an
open backdoor path via𝑈 , which confounds the causal effect
of interest.

We can close the backdoor, by controlling for𝑈 , e.g.

𝐲 = 𝐱𝛽 + 𝐮𝜃 + 𝜺.

We have a problem if we cannot control for a confounder.

𝑋 𝑌

𝑈

𝐻

Confounder
A confounder is a variable that influences both the dependent and explanatory
variables — effects of the confounder and the explanatory are mixed together.
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Colliders and closed backdoors

Assume we can condition on the confounder from before,
but we want to consider social circles, 𝑉 . We assume they
are caused by 𝑋 and 𝑌 , giving us the DAG to the right.

There are two paths from 𝑋 to 𝑌 ,
1. one direct path 𝑋 → 𝑌 , and
2. one backdoor path 𝑋 → 𝑉 ← 𝑌 .

Because the backdoor collides at 𝑉 , it is already closed.

𝑋 𝑌

𝑉

Collider
A collider is a variable that is influenced by both the dependent and explanatory
variables — they act as a sink, and close backdoor paths.
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The backdoor criterion andmediators

An open backdoor between two variables creates systemic, non‐causal correlation
between them. To estimate a causal effect, we need to close backdoor paths, by

controlling for confounders along the path,
leaving colliders along the path alone.

Another relevant type of variable is the mediator, which mediates (part of) the causal
effect of 𝑋 on 𝑌 . Controlling for a mediator removes the mediated effect.

𝑋 𝑌

Confounder 𝑋 𝑌

Collider

𝑋 𝑌Mediator

direct

117/324



The backdoor criterion andmediators

An open backdoor between two variables creates systemic, non‐causal correlation
between them. To estimate a causal effect, we need to close backdoor paths, by

controlling for confounders along the path,
leaving colliders along the path alone.

Another relevant type of variable is the mediator, which mediates (part of) the causal
effect of 𝑋 on 𝑌 . Controlling for a mediator removes the mediated effect.

𝑋 𝑌

Confounder 𝑋 𝑌

Collider

𝑋 𝑌Mediator

direct

118/324



Example 1— Education and income

We want to learn about the effects of education (𝑋 ) on income (𝑌).

Education is not chosen at random, but determined by other factors,
e.g. the education and income of parents (𝑃𝐸 and 𝑃𝐼 ),
and other unobserved background factors (𝐵𝐺).

PE

BG

PI

X

Y
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Example 1— Telling a story

Our DAG tells a story and encodes our assumptions — does this story make sense?

We assumed that background factors, 𝐵𝐺, only affect income via education.
This means that e.g. ability, intelligence, motivation, and social environment have
no direct effect on income.

PE

BG

PI

X

Y
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Example 1— Enumerating our DAG

If we still settle on this DAG, we proceed by listing all paths between variables of interest
(in our case, these are 𝑋 and 𝑌).

1. 𝑋 → 𝑌 (direct)
2. 𝑋 ← 𝑃𝐼 → 𝑌 (backdoor 1)
3. 𝑋 ← 𝑃𝐸 → 𝑃𝐼 → 𝑌 (backdoor 2)
4. 𝑋 ← 𝐵𝐺 → 𝑃𝐸 → 𝑃𝐼 → 𝑌 (backdoor 3)

PE

BG

PI

X

Y
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Example 2—Discrimination

Assume we want to investigate the gender pay‐gap — i.e. whether, and, if so, to which
extent it is caused by discrimination.

But how does discrimination manifest?
Does discrimination directly lower income?
Does it affect the occupation chosen, hours worked, or promotions?

If we control for these factors, we will underestimate the effects of discrimination.

Some people may perceive that there is no gender pay‐gap in their profession, especially
after accounting for part‐timework. This perspective is already conditional on occupation,
level, hours, location, etc.
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Example 2— To the drawing board

Let’s consider a simple example — we are interested in the effect of

gender‐based (𝐹) discrimination (𝑋 ) on
earnings (𝑌), accounting for
occupation (𝑂) and
aptitude (𝐴).

We will assume that we can observe and measure
discrimination, but not aptitude.

F

O A

X Y
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Example 2— Enumerating paths

The paths between 𝑋 and 𝑌 are
1. 𝑋 → 𝑌 ,
2. 𝑋 → 𝑂 → 𝑌 ,
3. 𝑋 → 𝑂 ← 𝐴 → 𝑌 ,
4. 𝑋 ← 𝐹 → 𝑂 → 𝑌 ,
5. 𝑋 ← 𝐹 → 𝑂 ← 𝐴.

F

O A

X Y

𝑌 ∼ 𝐹 — we get a compound effect of 𝑋 and
𝑂 (1, 2 and 4).
𝑌 ∼ 𝑋 — we get the effects of 𝑋 (1 and 2),
but they are confounded by 𝐹 (4).
𝑌 ∼ 𝑋,𝑂 — we get rid of the confounder 𝐹
(4), and separate the effects of 𝑋 (1 and 2),
but are now confounded by 𝐴 (3 and 5).
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Without𝐴, we cannot isolate the causal effect of𝑋
on𝑌 in this model. DAGs can highlightwhat cannot
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Example 3— Berkson’s paradox

Your friend Alex postulates that, based on dating experience, nice men are less
handsome than rude ones. You collect the data below, and find no correlation.

0 5 10

0
5

10

Why could Alex still be right?

Alex only dates someone if they are
particularly nice and/or handsome.
Dating experience is a collider —
conditioning on it causes bias.

nice handsome

dateable
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Resources

These slides are inspired by Cunningham (2021), who has a chapter on DAGs.
Causal inference with DAGs is covered comprehensively by Pearl (2009).
‘The Book of Why’ (Pearl and Mackenzie 2018) takes a more accessible approach,
covering the subject for a general audience.
Imbens (2020) reviews DAG and potential outcome approaches to causality, with
a focus on empiricial applications in economics.

You can create DAGs with pen and paper or specialised software, such as DAGitty or
ggdag, or more general diagrams with PGF/TikZ in LaTeX, and diagrams.net / draw.io.
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https://mixtape.scunning.com/03-directed_acyclical_graphs
http://www.dagitty.net/
https://CRAN.R-project.org/package=ggdag
https://github.com/pgf-tikz/pgf
https://app.diagrams.net/


References i

Anderson, T. W., and Herman Rubin. 1949. “Estimation of the Parameters of a Single
Equation in a Complete System of Stochastic Equations.” Annals of Mathematical
Statistics 20 (1): 46–63. https://doi.org/10.1214/aoms/1177730090.

Andrews, Isaiah, James H. Stock, and Liyang Sun. 2019. “Weak Instruments in
Instrumental Variables Regression: Theory and Practice.” Annual Review of
Economics 11 (1): 727–53.
https://doi.org/10.1146/annurev‐economics‐080218‐025643.

Angrist, Joshua D., Pierre Azoulay, Glenn Ellison, Ryan Hill, and Susan Feng Lu. 2017.
“Economic Research Evolves: Fields and Styles.” American Economic Review 107 (5):
293–97. https://doi.org/10.1257/aer.p20171117.

Angrist, Joshua D., and Alan B. Krueger. 2001. “Instrumental Variables and the Search
for Identification: From Supply and Demand to Natural Experiments.” Journal of
Economic Perspectives 15 (4): 69–85. https://doi.org/10.1257/jep.15.4.69.

134/324

https://doi.org/10.1214/aoms/1177730090
https://doi.org/10.1146/annurev-economics-080218-025643
https://doi.org/10.1257/aer.p20171117
https://doi.org/10.1257/jep.15.4.69


References ii

Angrist, Joshua D., and Jörn‐Steffen Pischke. 2010. “The Credibility Revolution in
Empirical Economics: How Better Research Design Is Taking the Con Out of
Econometrics.” Journal of Economic Perspectives 24 (2): 3–30.
https://doi.org/10.1257/jep.24.2.3.

Athey, Susan, and Guido W. Imbens. 2017. “The State of Applied Econometrics:
Causality and Policy Evaluation.” Journal of Economic Perspectives 31 (2): 3–32.
https://doi.org/10.1257/jep.31.2.3.

———. 2019. “Machine Learning Methods That Economists Should Know About.”
Annual Review of Economics 11 (1): 685–725.
https://doi.org/10.1146/annurev‐economics‐080217‐053433.

135/324

https://doi.org/10.1257/jep.24.2.3
https://doi.org/10.1257/jep.31.2.3
https://doi.org/10.1146/annurev-economics-080217-053433


References iii

Bound, John, David A. Jaeger, and Regina M. Baker. 1995. “Problems with
Instrumental Variables Estimation When the Correlation Between the Instruments
and the Endogenous Explanatory Variable Is Weak.” Journal of the American
Statistical Association 90 (430): 443–50.
https://doi.org/10.1080/01621459.1995.10476536.

Buckles, Kasey S., and Daniel M. Hungerman. 2013. “Season of Birth and Later
Outcomes: Old Questions, New Answers.” Review of Economics and Statistics 95 (3):
711–24. https://doi.org/10.1162/REST_a_00314.

Cunningham, Scott. 2021. Causal Inference. New Haven, CT, USA: Yale University
Press. https://doi.org/10.12987/9780300255881.

Hamermesh, Daniel S. 2013. “Six Decades of Top Economics Publishing: Who and
How?” Journal of Economic Literature 51 (1): 162–72.
https://doi.org/10.1257/jel.51.1.162.

136/324

https://doi.org/10.1080/01621459.1995.10476536
https://doi.org/10.1162/REST_a_00314
https://doi.org/10.12987/9780300255881
https://doi.org/10.1257/jel.51.1.162


References iv

Imbens, Guido W. 2020. “Potential Outcome and Directed Acyclic Graph Approaches
to Causality: Relevance for Empirical Practice in Economics.” Journal of Economic
Literature 58 (4): 1129–79. https://doi.org/10.1257/jel.20191597.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An
Introduction to Statistical Learning. Springer US.
https://doi.org/10.1007/978‐1‐0716‐1418‐1.

King, Gary, and Richard Nielsen. 2019. “Why Propensity Scores Should Not Be Used
for Matching.” Political Analysis 27 (4): 435–54.
https://doi.org/10.1017/pan.2019.11.

Leamer, Edward E. 1983. “Let’s Take the Con Out of Econometrics.” American Economic
Review 73 (1): 31–43. https://www.jstor.org/stable/1803924.

Pearl, Judea. 2009. Causality. Cambridge Core. Cambridge, England, UK: Cambridge
University Press. https://doi.org/10.1017/CBO9780511803161.

137/324

https://doi.org/10.1257/jel.20191597
https://doi.org/10.1007/978-1-0716-1418-1
https://doi.org/10.1017/pan.2019.11
https://www.jstor.org/stable/1803924
https://doi.org/10.1017/CBO9780511803161


References v

Pearl, Judea, and Dana Mackenzie. 2018. The Book of Why: The New Science of Cause
and Effect. Basic books.

Steel, Mark F. J. 2020. “Model Averaging and Its Use in Economics.” Journal of Economic
Literature 58 (3): 644–719. https://doi.org/10.1257/jel.20191385.

138/324

https://doi.org/10.1257/jel.20191385


Threats to causal identification



Validity

In order to assess the quality of causal inferences, it helps to think of the validity of a
statistical analysis. Different concepts of validity include the following.

Construct validity relates the analysis to the investigated theoretical construct.
Content validity relates the analysed aspects to the relevant real‐world aspects.
Predictive validity concerns the utility for prediction.

External validity determines whether an insight can be generalised.
Internal validity qualifies the causal interpretation of an inference.

Statistical validity
The validity of an analysis can be thought of as the extent to which the analysis
corresponds to the relevant aspects of the real world.
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External validity

External validity is the validity of an analysis outside its own context, telling us whether
findings can be generalised across situations, people, time, regions, etc.

Analyses may yield insights that are highly specific to their circumstances.
There can be trade‐offs between external and other types of validity.

A perfect experiment may control important factors tightly.
A poor analysis limits what we learn at all.

External validity and testing code
what_day_is_it <- function() return("Monday")

I tested this function several times when I wrote it, and it worked every time.
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Threats to external validity

Sample size and population
The individuals in your sample may not represent the population —

e.g. a US study on unemployment may not generalise to Austria.

Your sample size may be too small for the issue —
small or rare effects could be too small to measure or could not appear.

Situations
Your analysis may be specific to a point in time —

e.g. due to politics, weather, or other circumstances.

Insights may be bound to a specific location —
geography may affect how the analysis turns out.
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Dealing with external validity

We can often solve issues with external validity by reprocessing the collected data.

Generalisability and imbalance
Age plays an important role in vaccine effectiveness. If individuals in the sample are
younger than the overall population, insights from a study may be biased. To fix this,
we could re‐weigh the age‐specific effect using age distribution of the population.

Issues with external validity ultimately stem from the interactions between (uncountably
many) factors that may (or may not) be relevant.

The effects of studying on academic performance may also be (slightly) affected by:
whether you eat breakfast, the type of breakfast, your diet, your social life, the incidence
of an armed conflict abroad, a game being published, …
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Learning generalisable ‘facts’

There are many generalisable insights that we can learn, and that are worth learning. A
good test of external validity is the replication of an analysis in different settings and,
perhaps, with different methods.

Figure 8: <xkcd.com>.
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Internal validity

Internal validity is the validity of an analysis within its own context, i.e. the extent to
which the analysis allows for causal inference.

Empirical evidence may support various different interpretations.
We want to be able to credibly eliminate non‐causal interpretations.

What could have gone wrong during an experiment?
What other explanations do we have for a correlation?

Occam’s razor, or the principle of parsimony
There may be incomprehensibly many alternatives for each explanation. The idea of
Occam’s razor is to give preference to the simplest explanation (that cannot be
refuted), i.e. the one with the fewest parameters and/or assumptions.
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Revisiting the Gauss-Markov theorem

Ordingary least‐squares (OLS) estimation yields the best, linear, unbiased estimator
(BLUE) under the following conditions.

The data stems from a random sample of the population.
Exogeneity (zero conditional mean of errors), i.e. 𝔼[𝐞|𝐗] = 𝔼[𝐞] = 0.
The model is linear in parameters, e.g. 𝑓 (𝐗) = 𝛽0 + 𝛽1𝐱1 + … + 𝛽𝐾𝐱𝐾 .
No perfect collinearity, i.e. 𝐗 has full rank and we can compute (𝐗′𝐗)−1.
Homoskedasticity and no serial correlation, i.e.𝕍(𝐞|𝐗) = 𝐈𝜎2.

The first four assumptions imply that ̂𝜷 is unbiased, the last one implies that 𝜎̂2 is
unbiased and, hence, that the estimate is efficient.
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Exogeneity

Exogeneity is a weaker form of ignorability (that is focused on the expectation). The
exogeneity assumption 𝔼[𝐞|𝐗] = 0 is sometimes substituted with weak exogeneity —
Cov (𝐗, 𝐞) = 0. This guarantees consistency, but not unbiasedness of the estimator.

A failure of exogeneity is called endogeneity and causes bias and inconsistency by
confounding the effects of our regressors 𝐗 and the true errors 𝐞 on 𝐲.

Parameter bias and consistency
An estimate 𝜃̂ is unbiased if 𝔼􏿮𝜃̂􏿱 = 𝜃 See proof for OLS . It is consistent if it converges in
probability to the true parameter with increasing data, i.e.

plim𝑁→∞ |𝜃̂ − 𝜃| > 𝜀 = 0.
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The effect of endogeneity

Consider the effect of adjusting 𝐱1 to 𝐱∗1 — we have

𝔼􏿮𝐲|𝐗∗􏿱 − 𝔼􏿮𝐲|𝐗􏿱 = 𝛽1(𝐱∗1 − 𝐱1) + (𝔼[𝐞|𝐗∗] − 𝔼[𝐞|𝐗]).

Under exogeneity, we get the correct effect since the second term is zero.

However, if 𝐱1 and 𝐞 are correlated, we have 𝔼[𝐞|𝐗] = 𝜃1𝐱1 + 𝜃0 with 𝜃1 ≠ 0. We
cannot separate the effects of observed factors (𝛽1) and unobserved ones (𝜃1) and
estimate

𝔼􏿮𝐲|𝐗∗􏿱 − 𝔼􏿮𝐲|𝐗􏿱 = 𝛽1(𝐱∗1 − 𝐱1) + 𝜃1 􏿴𝐱∗1 − 𝐱1􏿷.
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Threats to internal validity

There are many threats to internal validity.
It can help to think in terms of frameworks for causal inference, i.e.

directed acyclic graphs and/or
potential outcomes and ignorability of a treatment.

There are many common issues that we’ll cover in more detail.

cause effect

154/324



Confounders and omitted variables

We already learned that a confounder, a third variable that drives both the cause and
effect, can cloud causal effects — if it is not accounted for.

cause effect

confounder

Consider the following true model

𝐲 = 𝛽0 + 𝛽1𝐱1 + 𝛽2𝐱2 + 𝐞.

What are the implications of estimating 𝐲 = 𝛽0 + 𝛽1𝐱1 + 𝐞 instead?
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Omitted variable bias

Bias from a confounder is also called omitted variable bias. It occurs if

1. The omitted variable is correlated with the regressors, and
2. it is also a determinant of 𝐲.

In our example, the bias is given by

𝔼􏿮𝛽̂1􏿱 = 𝛽1 +
Cov (𝐱1, 𝐱2)

𝕍(𝐱1)
𝛽2.

Income, education, and ability
Assume you’re interested in the effects of education (𝐱1) on income (𝐲). Ability (𝐱2)
affects income (𝛽2 ≠ 0) and is correlated with education (Cov (𝐱1, 𝐱2) ≠ 0) — to
causally identify 𝛽1, we need to control for ability.
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Omitted variables and proxies

Many (potentially) omitted variables cannot be observed. Instead, we may be able to
use a proxy variable. Recall the true model:

𝐲 = 𝛽0 + 𝛽1𝐱1 + 𝛽2𝐱2 + 𝐞,

where we cannot observe 𝐱2. Instead, we could control for a proxy, 𝐳, that fulfils

𝐳 = 𝜃0 + 𝜃1𝐱2 + 𝐮.

Ability and IQ
To causally identify the effect of education on income, we could use the results of an
IQ test as proxy variable for ability.
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Using proxy variables

In order to use a proxy variable to identify a causal effect, it must

1. correlate with the omitted variable (𝜃1 ≠ 0),
2. not correlate with other explanatory variables (Cov (𝐗, 𝐮) = 0),
3. have no direct impact on the dependent variable (Cov (𝐳, 𝐞) = 0).

Condition 1 calls for an edge from the proxy to the
confounder, while conditions 2 and 3 imply a lack of
other (relevant) edges.
We will revisit another useful type of proxy variables
(‘instrumental variables’) at a later stage.

cause effect

confounder

proxy
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Selection bias

If our sample is not random, we may speak of selection bias — some subjects are
more/less prone to be selected for our sample, thus distorting statistical insights.

Figure 9: <xkcd.com>.
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Types of selection biases

Selection bias is related to sample issues that may plague external validity, but also
threatens (supposedly) in‐sample inference. There are many types of selection bias;
some notable examples are listed below.

Doctors prescribe treatment if they think patients will benefit.
Subjects may drop out of the sample (or even the population) for many reasons.
Subjects may self‐select (i.e. volunteer) for certain treatments.
Journals like to publish groundbreaking results (shocking and 𝑝 < .001).
We like to focus on evidence that makes sense to us and confirms our priors.
Successful individuals give advice that is conditional on their experience.

Why could the introduction of steel helmets lead to higher rates of head injury?
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Selection bias and spillover effects?

Figure 10: Rainbow crosswalk in Vienna, <wien.gv.at>.
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Data issues

Data may be subject to various issues, e.g. due to errors during collection. This may
affect our ability to analyse the data.

Can we use survey data of savings or income?
Are there potential issues when tracking development over time?
Can we ignore satellite images with clouds when classifying forests?
How do we quantify ability? How to measure gross domestic product?
What could go wrong during data collection?

There will definitely be typos, there could be malice, and
our computers have finite precision, and cosmic rays can cause bit flips.

If you’re on the fence — now is the time to argue about what can truly be known.
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Missing data

Consider a true 𝑓 describing a population of size𝑁 , but we only observe𝑀(< 𝑁)
subjects. What can we learn from our subset?

We are fine, if our𝑀 samples are a random subset of the population — the
selection process is ignorable.
Otherwise, there may be selection bias — we differentiate between
1. endogenous sample selection, related to the dependent variable, and
2. exogenous sample selection, based on explanatory or third variables.

We need to account for endogenous sample selection to guarantee internal validity;
exogenous selection limits external validity.
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Non-randommissingness, censoring, and truncation

If there is a pattern to missingness we,

may have to account for it to avoid bias (e.g. self‐reported income), or
can benefit from accounting for it (more information yields better estimates).

Censoring and truncation
When only parts of a sample are known, we speak of censoring. E.g. if

1. values are too low/high for our instruments to measure,
2. we stop measuring at a predetermined time (or after a number of events),
3. there are incentives for reporting certain values.

If samples where a value exceeds some threshold are missing, it is truncated.
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Outliers and influential observations

Outliers are observations that are very different from the rest, and may stem from

an inappropriate model,
data errors,
heterogeneity in the sample,
random chance.

Outliers may have a large impact on estimates, i.e. high influence. For 𝛽𝑂𝐿𝑆 an
influential observation, 𝑖, has a combination of high residual (𝑒𝑖) and high leverage
(ℎ𝑖 = 􏿮𝐗 (𝐗′𝐗)−1 𝐗′􏿱

𝑖𝑖
); its influence is given by

𝛽 − 𝛽(𝑖) =
(𝐗′𝐗)−1 𝑥′𝑖𝑒𝑖

1 − ℎ𝑖
.
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Figure 11: Anscombe’s quartet — four different datasets with equal means, variance, and regression
lines — emphasises the importance of in‐depth analysis (see Anscombe, 1973).
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Dealing with outliers and influential observations

We may discover outliers early on, when exploring the data (e.g. via summary statistics
or plots) or later when evaluating the model (e.g. the residual values).

It can be tempting to remove outliers from the analysis, as supposed errors.
However, they may convey the most interesting aspects of the problem.
A good model allows us to learn, and accommodates exceptional cases.

Robust methods
There are many estimation methods that are more robust to few observations.
Examples include M‐, S‐, or least absolute deviation (LAD) estimation. There, we
minimise absolute residuals as

𝛽𝐿𝐴𝐷 = argmin𝛽 􏿺|𝐲 − 𝐗𝛽|􏿽 .
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Spotting an outlier— error or information?
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Measurement errors in the dependent variable

Consider a true 𝑓 with one explanatory variable, where the dependent variable (𝐲) is
observed with additional errors (𝐮). We only observe 𝐳 = 𝐲 + 𝐮, and estimate

𝐳 = 𝛽𝐱 + 𝐞 + 𝐮.

What happens?

If the error (𝐮) is random, we let 𝐞̃ = 𝐞 + 𝐮 and can proceed as usual.
Measurement error is just more error — estimates are valid, but less precise.

However, if the error is not independent of 𝐱, we will suffer from bias.
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Errors in the explanatory variable

Now, consider a true 𝑓 with one explanatory variable (𝐱) that is itself observed with
errors. We want 𝐲 = 𝛽𝐱 + 𝐞, but only observe 𝐳 = 𝐱 + 𝐮 and estimate

𝐲 = 𝛽 (𝐳 − 𝐮) + 𝐞.

We can collect the errors in 𝐞̃ = 𝐞 − 𝛽𝐮 and rewrite as

𝐲 = 𝛽𝐳 + 𝐞̃.

What happens?

Our estimates will suffer from attenuation bias.
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Attenuation bias

Consider a weaker version of ignorability of the treatment — we want Cov (𝐱, 𝐞) = 0.
With measurement error in 𝐱, we estimate 𝐲 = 𝛽𝐳 + 𝐞̃, and find that

Cov (𝐳, 𝐞̃) = Cov 􏿴𝐳, 𝐞 − 𝛽𝐮􏿷

= Cov 􏿴𝐱 + 𝐮, 𝐞 − 𝛽𝐮􏿷 ≠ 0.

We may assume (1) Cov (𝐱, 𝐞) = 0, (2) Cov (𝐱, 𝐮) = 0, (3) Cov (𝐮, 𝐞) = 0, but

Cov 􏿴𝐮, −𝛽𝐮􏿷 = −𝛽𝔼􏿮𝐮2􏿱 .

Here, the bias is given by See details

𝔼􏿮𝛽̂􏿱 = 𝛽 𝜎2𝐱
𝜎2𝐱 + 𝜎2𝐮

.

The bias goes towards zero (𝑎/(𝑎 + 𝑏) ≤ 1), and reduces the size of estimates.
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Simultaneity and reverse causality

The causal effect of interest, i.e. 𝑋 → 𝑌 , is not always as straightforward as we would
like. Instead, we may encounter

reverse causality, where 𝑋 ← 𝑌 , and
simultaneity, where 𝑋 ↔ 𝑌

With pure reverse causality, the issue is determining the direction of causation. With
simultaneity, we want to disentangle the effects. Consider the following DAGs.

mental health

social status

price

quantity
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Simultaneity in demand and supply

Consider the following supply and demand functions, driven by the price 𝐩.

𝐝 = 𝛽𝑑𝐩 + 𝐞𝑑,
𝐬 = 𝛽𝑠𝐩 + 𝐞𝑠.

Usually, we cannot measure supply and demand. Instead, we observe the quantity sold
𝐪 (from the equilibrium 𝐪 = 𝐝 = 𝐬). We have

𝐪 = 𝛽𝑑𝐩 + 𝐞𝑑 = 𝛽𝑠𝐩 + 𝐞𝑠.

In this model, we cannot differentiate between the effect of price on supply or
demand.
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Parameter identification

To see why the parameters 𝛽𝑑 and 𝛽𝑠 are unidentified, we can solve for 𝐩.

𝛽𝑑𝐩 + 𝐞𝑑 = 𝛽𝑠𝐩 + 𝐞𝑠

𝛽𝑑𝐩 = 𝛽𝑠𝐩 + 𝐞𝑠 − 𝐞𝑑

𝛽𝑑𝐩 − 𝛽𝑠𝐩 = 𝐞𝑠 − 𝐞𝑑

𝐩 􏿴𝛽𝑑 − 𝛽𝑠􏿷 = 𝐞𝑠 − 𝐞𝑑

𝐩 = 𝐞𝑠 − 𝐞𝑑
𝛽𝑑 − 𝛽𝑠 .

The effect of interest, 𝐩, is a function of the errors — we can’t disentangle its effects. If
we regress 𝐪 on 𝐩, we can’t tell whether the effect stems from the demand or supply
function.
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Structural equations and simultaneity bias

Consider the following structural equations

𝐲 = 𝛽1𝐳 + 𝛽2𝐱1 + 𝐮,
𝐳 = 𝜃1𝐲 + 𝜃2𝐱2 + 𝐯.

We can derive a reduced form equation by solving for 𝐳

𝐳 = 𝛾1𝐱1 + 𝛾2𝐱2 + 𝜺,

where

𝛾1 =
𝜃1𝛽2

1 − 𝜃1𝛽1
𝛾2 =

𝜃2
1 − 𝜃1𝛽1

𝜺 = 𝜃1𝐮 + 𝐯
1 − 𝜃1𝛽1

.
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Simultaneity bias

The reduced form of our structural equations make two issues clear

The reduced form parameters 𝛾1 and 𝛾2 are non‐linear functions of the structural
parameters, 𝜷, 𝜽.
The structural parameters are not ignorable — 𝐳 and 𝐮 are correlated via 𝐲.

In the reduced form, the error term is

𝜺 = 𝜃1𝐮 + 𝐯
1 − 𝜃1𝛽1

,

where the correlation between 𝜃1𝐮 and the structural regressor 𝐲 causes bias in

𝐳 = 𝜃1𝐲 + 𝜃2𝐱2 + 𝐯.
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Outlook

Going forward, we will cover methods for dealing with these issues, including

instrumental variable models, simultaneous equation models,
matching procedures, flexible estimation methods, and quasi‐experiments.

Other threats to internal validity
There are countless other threats to internal validity. These can generally be seen as
variants of the concepts we already considered. Examples include

historical bias, due to events outside our control,
experimenter bias, where the conductor affects the experiment (inadvertently),
diffusion, where spillover effects between subjects complicate inference,
reversion to the mean, where larger samples tend to be less extreme.
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Unbiased OLS estimates

The OLS estimate of 𝛽 is unbiased under the Gauss‐Markov assumptions.

𝛽𝑂𝐿𝑆 = (𝐗′𝐗)−1𝐗′𝐲 fill in for 𝐲
= (𝐗′𝐗)−1𝐗′(𝐗𝛽 + 𝐞)
= (𝐗′𝐗)−1(𝐗′𝐗𝛽 + 𝐗′𝐞) split the sum

= (𝐗′𝐗)−1(𝐗′𝐗)𝛽 + (𝐗′𝐗)−1𝐗′𝐞
= 𝐈𝛽 + (𝐗′𝐗)−1𝐗′𝐞 take expectation

𝔼􏿮𝛽𝑂𝐿𝑆􏿱 = 𝛽 + 𝔼􏿮(𝐗′𝐗)−1𝐗′𝐞|𝐗􏿱 condition on 𝐗

= 𝛽 + (𝐗′𝐗)−1𝐗′𝔼[𝐞|𝐗] note that 𝔼[𝐞|𝐗] = 0
= 𝛽

Go back
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Attenuation bias

We show the attenuation bias from estimating 𝐲 = 𝛽𝐱 + 𝐞 with 𝐳 = 𝐱 + 𝐮, i.e.

𝐲 = 𝛽(𝐳 − 𝐮) + 𝐞 = 𝛽𝐳 + 𝐞 − 𝛽𝐮, 𝐲 = 𝛽𝐳 + 𝐞̃,

𝛽̂ = (𝐳′𝐳)−1 𝐳′𝐲 = 𝛽 + (𝐳′𝐳)−1 𝐳′𝐞̃,

𝛽̂ = 𝛽 + (𝐳′𝐳)−1 𝐳′𝐞 − (𝐳′𝐳)−1 𝐳′𝛽𝐮,

𝛽̂ = 𝛽 + 0 − 𝛽 (𝐳′𝐳)−1 𝐳′𝐮,

𝛽̂ = 𝛽 − 𝛽 􏿴(𝐱 + 𝐮)′ (𝐱 + 𝐮)􏿷
−1

(𝐱 + 𝐮)′ 𝐮,

𝔼􏿮𝛽̂􏿱 = 𝛽 􏿶1 −
Cov (𝐱, 𝐮) + 𝕍(𝐮)

𝕍(𝐱) + Cov (𝐱, 𝐮) + 𝕍(𝐮)􏿹 ,

where we assume Cov (𝐱, 𝐮) = 0 to reformulate as 𝔼􏿮𝛽̂􏿱 = 𝛽 𝜎2𝐱 􏿴𝜎2𝐱 + 𝜎2𝐮􏿷
−1
.

Go back
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Instrumental variable regression



Why instrumental variables?

Instrumental variables (IV) allow us to isolate a causal effect from observational data.
This is particularly important when

there is simultaneous causality, or
omitted variables are unobtainable.

We can use instruments with the two‐stage least squares (2SLS) estimator, which
allows us to obtain consistent estimates in such settings.

instrument cause

effect
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How does instrumental variable regression work?

Consider a model with endogenous regressors, 𝐗, that are correlated with the error
term, 𝐞. With IV regression, we use instrumental variables, 𝐙, to consistently estimate
the effects of the endogenous regressors.

For this to work, an instrument must satisfy two conditions.

1. Exogeneity condition — the instrument must be uncorrelated with the error term,
𝐞; otherwise, the instrument is invalid.

2. Relevance condition — 𝐗 and 𝐙 must be correlated; if the correlation is low or
non‐existent, the instrument is weak.

We can test the relevance of an instrument, but not its exogeneity (we don’t observe 𝐞).
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Illustration—first stage

Consider a model with one endogenous variable

𝐲 = 𝛽0 + 𝛽1𝐱1 + 𝐞,

where Cov (𝐱1, 𝐞) ≠ 0, e.g. due to an omitted variable.

𝐳1 𝐱1

𝐲
𝐞

In the first stage we use the instrument 𝐳1 to estimate

𝐱1 = 𝜃0 + 𝜃1𝐳1 + 𝐮
= 𝐱̂1 + 𝐮,

i.e. we use the instrument to predict the endogenous variable 𝐱̂1.
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Illustration— second stage

In the second stage, we use our prediction 𝐱̂1 instead of 𝐱1. If the instrument is valid, it
is exogenous by design — it only depends on the instrument that is uncorrelated with 𝐞.
We estimate

𝐲 = 𝛽0 + 𝛽1𝐱̂1 + 𝐞,

and obtain a biased, but consistent estimate of 𝛽1.

Recap— consistency
An estimate 𝜃̂ is consistent if it converges in probability to the true parameter with

increasing𝑁 , i.e. plim𝑁→∞ |𝜃̂ − 𝜃| > 𝜀 = 0 — also denoted by 𝜃̂
p
→𝜃.
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The instrumental variable regressionmodel

Consider a more general model
𝐲 = 𝐔𝜷 + 𝐞,

where𝐔 = [𝐖𝐗], with Cov (𝐖, 𝐞) = 0 and Cov (𝐗, 𝐞) ≠ 0 — we have

𝐖 containing 𝐿 exogenous regressors, and
𝐗 with 𝐾 endogenous regressors.

Assume we have𝑀 instrumental variables, in 𝐙.

If𝑀 ≥ 𝐾 we can identify the effect of the endogenous regressors.
There is (at least) one instrument per endogenous variable to isolate its effect.

195/324



2SLS— the concept

The concept behind the 2SLS estimator is similar to before. First, we regress the
endogenous regressors, 𝐗, on the exogenous variables𝐖 and the instruments 𝐙. We will
assume that there are no exogenous regressors for simplicity.

𝐗 = 𝐙𝛿 + 𝐯,
𝛿̂ = (𝐙′𝐙)−1𝐙′𝐗.

We can now obtain a prediction 𝐗̂ = 𝐙′𝛿̂ for the next stage. We can also express this
prediction as 𝐗̂ = 𝐏𝐙𝐗, where we use the projection matrix

𝐏𝐙 = 𝐙(𝐙′𝐙)−1𝐙′.
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2SLS— the estimator

Next, we replace the endogenous variables with their prediction 𝐗̂ = 𝐏𝐙𝐗. We obtain
the 2SLS estimator of the model as follows.

𝐲 = 𝐗̂𝛽 + 𝐞,
𝛽̂ = (𝐗̂′𝐗̂)−1𝐗̂′𝐲
= (𝐗′𝐏′

𝐙𝐏𝐙𝐗)−1𝐗′𝐏′
𝐙𝐲

= (𝐗′𝐏𝐙𝐗)−1𝐗′𝐏𝐙𝐲
𝛽2𝑆𝐿𝑆 = (𝐗′𝐏𝐙𝐗)−1𝐗′𝐏𝐙𝐲.

This works since 𝐏𝐙 is symmetric (𝐏′
𝐙 = 𝐏𝐙) and idempotent (𝐏𝐙𝐏𝐙 = 𝐏𝐙).

The covariance matrix of the 2SLS estimator is 𝐶𝑜𝑣(𝛽2𝑆𝐿𝑆) = 𝜎2(𝐗′𝐏𝐙𝐗)−1.
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A special case— the IV estimator

When the coefficients are just identified (𝑀 = 𝐾 ), we can use the IV estimator

𝛽𝐼𝑉 = (𝐙′𝐗)−1𝐙′𝐲.

We can derive it by pre‐multiplying 𝐙′ in the standard model.

𝐲 = 𝐗𝛽 + 𝐞
𝐙′𝐲 = 𝐙′𝐗𝛽 + 𝐙′𝐞

𝐙′𝐗𝛽𝐼𝑉 = 𝐙′𝐲

𝛽𝐼𝑉 = (𝐙′𝐗)−1 𝐙′𝐲.

𝑀 = 𝐾 means that the dimensions of (𝐙′𝐗)−1 ∈ ℝ𝑀×𝐾 and 𝐙′𝐲 ∈ ℝ𝑀×1 match.
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A special case— the IV estimator

When the coefficients are just identified (𝑀 = 𝐾 ), we can use the IV estimator

𝛽𝐼𝑉 = (𝐙′𝐗)−1𝐙′𝐲.

We can derive it by pre‐multiplying 𝐙′ in the standard model.
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Proving consistency of the IV estimator

𝛽𝐼𝑉 = (𝐙′𝐗)−1𝐙′𝐲
= (𝐙′𝐗)−1𝐙′𝐗𝛽 + (𝐙′𝐗)−1𝐙′𝐞

= 𝛽 + (𝐙′𝐗)−1𝐙′𝐞.

We can factor in 𝑁
𝑁 , and from the exogeneity and relevance conditions we get

Cov (𝐙, 𝐞) = 0 implying that 𝐙′𝐞𝑁−1 p
→0,

Cov (𝐙, 𝐗) ≠ 0 implying that 𝐙′𝐗𝑁−1 p
→𝑐 = 𝔼[𝐙′𝐗].

We see that 𝛽𝐼𝑉
p
→𝛽 +

0
𝑐
= 𝛽 as𝑁 → ∞.

This proof relies on the fact that plim 𝑎
𝑏 = plim 𝑎

plim 𝑏 , which is not the case for expectations.

202/324



Proving consistency of the IV estimator

𝛽𝐼𝑉 = (𝐙′𝐗)−1𝐙′𝐲
= (𝐙′𝐗)−1𝐙′𝐗𝛽 + (𝐙′𝐗)−1𝐙′𝐞

= 𝛽 + (𝐙′𝐗)−1𝐙′𝐞 = 𝛽 + 􏿴𝐙′𝐗𝑁−1􏿷
−1

𝐙′𝐞𝑁−1.

We can factor in 𝑁
𝑁 , and from the exogeneity and relevance conditions we get

Cov (𝐙, 𝐞) = 0 implying that 𝐙′𝐞𝑁−1 p
→0,

Cov (𝐙, 𝐗) ≠ 0 implying that 𝐙′𝐗𝑁−1 p
→𝑐 = 𝔼[𝐙′𝐗].

We see that 𝛽𝐼𝑉
p
→𝛽 +

0
𝑐
= 𝛽 as𝑁 → ∞.

This proof relies on the fact that plim 𝑎
𝑏 = plim 𝑎

plim 𝑏 , which is not the case for expectations.

203/324



Proving consistency of the IV estimator

𝛽𝐼𝑉 = (𝐙′𝐗)−1𝐙′𝐲
= (𝐙′𝐗)−1𝐙′𝐗𝛽 + (𝐙′𝐗)−1𝐙′𝐞

= 𝛽 + (𝐙′𝐗)−1𝐙′𝐞.

We can factor in 𝑁
𝑁 , and from the exogeneity and relevance conditions we get

Cov (𝐙, 𝐞) = 0 implying that 𝐙′𝐞𝑁−1 p
→0,

Cov (𝐙, 𝐗) ≠ 0 implying that 𝐙′𝐗𝑁−1 p
→𝑐 = 𝔼[𝐙′𝐗].

We see that 𝛽𝐼𝑉
p
→𝛽 +

0
𝑐
= 𝛽 as𝑁 → ∞.

This proof relies on the fact that plim 𝑎
𝑏 = plim 𝑎

plim 𝑏 , which is not the case for expectations.
204/324



Small-sample bias of the IV estimator

The IV estimator is consistent, but almost certainly biased.

𝛽𝐼𝑉 = 𝛽 + (𝐙′𝐗)−1 𝐙′𝐞

𝔼􏿮𝛽𝐼𝑉 􏿱 = 𝛽 + 𝔼􏿮(𝐙′𝐗)−1 𝐙′𝐞􏿱.

We rely on𝑁 → ∞, since we cannot separate the second term —

1. if we conditioned on 𝐙, we’d be stuck with (𝐙′𝐗)−1,
2. if we conditioned on 𝐗 and 𝐙, we’d open up 𝔼[𝐞|𝐙, 𝐗], as in

𝛽 + 𝔼􏿮𝔼􏿮(𝐙′𝐗)−1 𝐙′𝐞|𝐙, 𝐗􏿱􏿱 = 𝔼􏿮(𝐙′𝐗)−1 𝐙′𝔼[𝐞|𝐙, 𝐗]􏿱 .
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Summary— instrumental variables

We use instrumental variables to isolate the causal effect of an endogenous variable.
The instruments must be

1. exogenous or valid (uncorrelated with the error term),
2. relevant or strong (correlated with the endogenous variable).

We need at least one instrument per endogenous variable, and use the 2SLS or IV
estimators to get consistent, but biased estimates. The size of the bias depends on

the exogeneity (for 𝐙′𝐞) and relevance (for 𝐙′𝐗) of the instrument, and
the size,𝑁 , of the sample.

instrument cause effect
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Examples for instrumental variables

Consider the effect of education (𝑋 ) on income (𝑌). Last time, we assumed

the education (𝑃𝐼 ) and income (𝑃𝐼 ) of parents play a role,
there is no causal effects of background factors (𝐵𝐹) such as ability.

With an IV for education, we could bypass this restriction.

PE

BG

PI

X

Y
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An IV for omitted variables

The background factors are an omitted variable that we cannot obtain. To distill a causal
effect, Angrist and Krueger (2001) use the quarter of birth as an instrument for
education. Why and how?

In the United States, students must attend school from the calendar year in which
they turn six until their 16th birthday.
School entry is once per year, so the length of schooling at age 16 differs, and
students who drop out at 16 create variation in education.

Tricia

Born in Dec

Arthur
Born in Jan

31. Dec

school at 5

school at 6 turn 16

turn 16

10 years, 3 months

9 years, 4 months
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The date of birth as instrument

As an instrument, the quarter of birth, should

1. not affect income directly (be valid), and
2. affect education (be relevant).

Validity is always up for discussion, but regarding relevance, Angrist and Krueger
(2001) show that men born earlier in the year tend to have lower education on average.

Let’s replicate their work using census data from 1980 of 300k men in their 40s, we

want to know whether the quarter of birth affects education, and
whether this variation affects income.
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Education and quarter of birth

Year of Birth

Ye
ar

s 
of

 E
du

ca
tio

n
Average Education by Quarter of Birth

1930 1932 1934 1936 1938 1940

12
.2

12
.4

12
.6

12
.8

13
.0

13
.2

Quarter 1
Quarter 4
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Wages and quarter of birth

Year of Birth

Lo
g 

W
ag

e
Average Wage by Quarter of Birth

1930 1932 1934 1936 1938 1940

5.
86

5.
88

5.
90

5.
92

5.
94

Quarter 1
Quarter 4
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Recapping the idea

Men born earlier in the year tend to have less education.
This seems to translate to a relation between wages and dates of birth.

Angrist and Krueger (2001) use these figures to motivate that wage differences by
quarter of birth are due to educational differences.

Education IncomeQuarter

Others
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Assessing the relevance of the instrument

Specifically, Angrist and Krueger (2001) use an interaction of quarter and year born as
instruments. We can assess the relevance of instrument by

computing the 𝐹 statistic of the first stage,
or the 𝑡 value of a single instrument.

In our example, we find 𝐹 = 4.91. The results of a simplified dummy‐only version are

Education ∼ Estimate Standard error

2nd quarter 0.057 0.0163
3rd quarter 0.113 0.0160
4th quarter 0.149 0.0162
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Estimation results

We replicate a basic specification of Angrist and Krueger (2001) using OLS and 2SLS.

Wage ∼ LS (SE) IV (SE)

Education 0.071 (0.0003) 0.089 (0.0161)

They find similar estimates when using OLS and IV models. If their instrument works
as intended, we learn that

omitted variable bias is relatively limited,
omitted variables reduce the impact of education on wages.

In their paper, they extend this simple setup with covariates for ethnic group, region of
residence, marital status, and age.
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Assessing IV approaches

Do our our IV regression works as intended? Standard diagnostics include

the Durbin‐Wu‐Hausman test, which compares the consistency of OLS estimator
to the less efficient, but consistent IV estimator,
𝐹 and 𝑡 statistics, which indicate the strength of instruments.

Testing exogeneity, i.e. the validity, of instruments is not as straightforward.

If we have multiple instruments, we can use Sargan’s 𝐽 test for overidentification.
In general, we have to rely on intellectual work.
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Choosing between IV and OLS

2SLS is consistent, assuming valid and relevant instruments.
OLS is more efficient, and may not suffer from endogeneity.
We prefer OLS, if there is no issue with endogeneity.

The Durbin‐Wu‐Hausman test compares an (assumed) consistent estimator to a more
efficient one that may be inconsistent. The idea is to

1. Use the first stage residuals as explanatory in the original model.
2. Test the relevance of this variable, i.e. 𝛽𝑗 = 0 for variable 𝑗.
3. If we reject the null hypothesis that 𝛽𝑗 = 0, we reject exogeneity of the

explanatory and thus, we reject the consistency of OLS.
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Relevance of instruments

Weak instruments can be fatal for IV regression. Recall that

𝛽𝐼𝑉 = 𝛽 + (𝐙′𝐗)−1 𝐙′𝐞,

where the second term should disappear as𝑁 → ∞. If the instrument is

irrelevant then 𝐙′𝐗 is small, which amplifies 𝐙′𝐞,
completely irrelevant then the limit is not defined (we don’t like 0−1).

IV with weak instruments can be a lot worse than OLS, since

inconsistency from small violations of the exogeneity condition is magnified,
the small‐sample bias of the 2SLS estimator is large,
confidence intervals will be too tight.
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Checking for weak instruments

Weak instruments can be a large problem. To assess them, we can check their
explanatory power using 𝐹 and 𝑡 tests.

𝐹 > 10 (and even 𝐹 > 100) has been suggested as a rule of thumb.
As an alternative, it makes sense to report Anderson‐Rubin confidence sets
(Anderson and Rubin 1949), which are robust to identification.

instrument cause effect

There is still a lot to learn about weak instruments, especially about multiple weak instru‐
ments for identification. For a recent review see Andrews, Stock, and Sun (2019).
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Overidentification

If we have more instruments than endogenous regressors, we have overidentification.

instrument 1

instrument 2
cause effect

With overidentification we can use Sargan’s 𝐽 test. The idea is to

compare estimates using different instruments —
if they are exogenous, estimates should be the same.
The test’s null hypothesis is that all instruments are valid.

The issue is that we don’t learn which instrument is not valid, and estimates could always
be similar or different by chance.
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Assessing the results of Angrist and Krueger (2001)

Test Statistic 𝑝 value

Weak instrument 𝐹 test 4.907 0.000
Sargan’s 𝐽 test 25.442 0.655

Relevance
Bound, Jaeger, and Baker (1995) argue that instruments are weak (supported by
𝐹 = 4.9). They show that an irrelevant instrument leads to similar results.

Exogeneity
Buckles and Hungerman (2013) see exogeneity as violated (not indicated by
𝐽 = 25.4) — there is seasonality in mother’s characteristics, which may affect the
income of their children. Women that give birth in winter are younger, less educated,
and are less likely to be married.
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Understanding instruments

Instruments help us isolate the causal effect in a confounded relationship; we want

strong instruments, so we have sufficient statistical power, and
exogenous instruments.

Evaluating their exogeneity is arguably the complicated part, requiring

in‐depth knowledge about the phenomenon under study, and
creativity for coming up with an instrument that is confusing enough for it to be
exogenous, yet relevant.

instrument cause effect
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Examples— family size and female labour

We want to learn about the way family size affects the labour supply of women —
e.g. to better understand discrimination or design policies for more equality.

Women with more children tend to work less.
This is unlikely to be exogenous — kid’s are not randomly assigned.

instrument kids work

Now consider the fact that mothers whose first two children are of the same gender
work less (our of the home) than others. How is this related to labour supply?

It probably isn’t — however, it may be related to family size. Parents may have a
preference for mixed genders and choose to have a third kid.
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Examples— the elusiveness of instruments

Instruments are elusive, and ought to be specific to a situation — if they are exogenous,
they should not be relevant for most other applications.

The weather (e.g. rainfall) is a well‐known, and commonly‐used instrument.
Covid‐19 may seem like an instrument, e.g. for income effects of schooling.

School IncomeCovid‐19

Errors
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Examples— further ones

There are countless studies using interesting instruments. Some instruments can work
in many settings — two notable examples are explained below.

Shift-share instruments
The shift‐share (or Bartik) instrument combines aggregate changes (shifts) with initial
values of individuals (shares), one of which has to be exogenous.

Judge fixed effects
If all subjects have to pass a randomly assigned judge (e.g.), who assigns a treatment,
the different characteristics of judges will create random variation that we can use.

The name stems from the random assignment of judges in the United States.
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Non-linear models



Limited dependent variables

So far, we have only dealt with continuous and unconstrained dependent variables,
i.e. 𝑌 ∈ ℝ, but many interesting variables are limited in some form, e.g.

probabilities range from zero to one,
GDP is a positive variable.

We can treat these limited variables as approximately continuous, but this may cause
severe issues. Instead, we can turn to specialised limited dependent variable (LDV)
models.

−5 −4 −3 −2 −1 0 1 2 3 4 5
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Examples for LDVs

We may distinguish between regression and classification tasks.

Classification
We speak of a classification model, if the outcome is

binary (e.g. passed or failed, good boy or not),
categorical (e.g. nationality, breed of dog),

ordinal (e.g. good – okay – bad).

Regression
We speak of a regression model, if the outcome is

censored, truncated, or positive (e.g. wages, wealth, time, forest loss),
count data (e.g. the number of votes, days since an accident),

Regression is generally used in a much broader sense, and may encompass classification.
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Figure 12: Land use change in the Brazilian Amazon.
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The linear probability model

First, consider the implications of using the linear probability model (LPM)

𝐲 = 𝑓 (𝐗) + 𝐞 = 𝐗𝛽 + 𝐞,

where the dependent variable is a probability, i.e. 𝐲 ∈ [0, 1].

For a binary dependent the expected value is equal the probability that 𝑦𝑖 = 1.

𝔼􏿮𝐲􏿱 = 0 ⋅ ℙ􏿴𝐲 = 0􏿷 + 1 ⋅ ℙ􏿴𝐲 = 1􏿷 .

Conditional on the regressor, 𝐗, we have

𝔼􏿮𝐲 | 𝐗􏿱 = ℙ􏿴𝐲 = 1 | 𝐗􏿷 = 𝐗𝛽.
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Understanding the LPM

ℙ􏿴𝐲 | 𝐗􏿷 = 𝛽0 + 𝐱1𝛽1 + … + 𝐱𝐾𝛽𝐾 .

The LPM implies that the coefficient 𝛽𝑗 gives us the expected absolute change of
probability if 𝐱𝑗 is changed by 1. This linearity assumption can be a major limitation.

Consider, e.g., a model of the probability of a cell
of land being deforested.

Or a turtle identifier.
We have 𝑌 ∈ {0, 1} and covariates on

population density in the area,
distance to the nearest city,
distance to agricultural land,
precipitation, and temperature.

Figure 13: What kind of turtle is this?
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Drawbacks of the LPM
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Modelling probabilities

When dealing with probabilities, the linearity assumption for 𝑓 may be too strong —
we need another approach.

Consider a function 𝐺 that satisfies 0 < 𝐺(𝑧) < 1.
We could use 𝐺 to adapt our model to

ℙ􏿴𝐲 | 𝐗􏿷 = 𝐺(𝐗𝛽).

This way, we can model a latent variable, 𝐳 = 𝐗𝛽, using a linear model, and link it to
the dependent 𝐲 via the non‐linear function 𝐺, giving us 𝐲 = 𝐺(𝐳).

Link function
The inverse function 𝐺−1(𝑧) is called the link function.
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The logit model

For the logit model, we use the the cumulative distribution function (CDF) of a logistic
variable — the logistic function — for 𝐺. The link function are log‐odds, log 𝑝

1−𝑝 .

𝐺(𝑧) = 𝑒𝑧
𝑒𝑧 + 1.
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Probit model

For the probit model, we use the CDF of a standard normal distribution,

𝐺(𝑧) = Φ(𝑧) = ℙ(𝑍 ≤ 𝑧) , where 𝑍 ∼𝒩(0, 1),

which gives us the probability that the standard normal variable 𝑍 is smaller than 𝑧.
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Interpretation

The interpretation of logit and probit models is not as straightforward as in linear
models due to their non‐linearity.

We can interpret the
sign of coefficients, i.e. the direction of the expected change, and
significance of coefficients.

So if 𝛽𝑗 > 0 we expect the probability to increase with 𝐱𝑗 and vice versa.

However, we cannot interpret the magnitude of coefficients as magnitude of the effect
of 𝐗 on 𝐲. Instead, it captures the effects of 𝐗 on the latent 𝐳, which we rarely care
about.
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Interpreting predictions

We can interpret predicted probabilities or differences in certain scenarios.
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Partial effects

The problem with interpreting coefficients is that partial effects of 𝐱𝑗 are affected by all
other variables. Assume 𝐱1 is a dummy, then

ℙ􏿴𝐲 | 𝐱1 = 1, 𝐱2, ⋅􏿷 = 𝐺(𝛽0 + 𝛽1 + 𝐱2𝛽2 + …)

ℙ􏿴𝐲 | 𝐱1 = 0, 𝐱2, ⋅􏿷 = 𝐺(𝛽0 + 𝐱2𝛽2 + …)

The change depends on the level of 𝐱2 and other variables. The same holds for
continuous variables, with the partial effect given by

𝜕ℙ􏿴𝐲 | 𝐱𝑗 = 𝑥𝑗, ⋅􏿷
𝜕𝐱𝑗

= 𝑔(𝐗𝛽) 𝛽𝑗,

where 𝑔(𝑧) = 𝐺′(𝑧), i.e. the first derivative.
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Reporting partial effects

We can use summary measures to help interpret partial effects in non‐linear models.

Partial effect at the average
The partial effect at the average (PEA) is given by

𝑔(𝐗̄𝛽̂) 𝛽̂𝑗,

and gives partial effects where explanatory variables are at their mean.

Average partial effect
The average partial effect (APE) is given by

∑𝑁
𝑗=1 𝑔(𝐗𝛽̂)
𝑁 𝛽̂𝑗.

We calculate the partial effect for each observation and take the average.
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Inference— testing

To test the significance of single coefficients, we can use 𝑡 values. For multiple
coefficients we can use the likelihood ratio test

LR = 2(logℒ𝑢 − logℒ𝑟).

We compare the likelihood of the unrestricted (ℒ𝑢) and restricted (ℒ𝑟) models, where
the models are required to be nested (the complex model nests the simpler one).

Likelihood
The likelihood function is the joint probability of the observed data, viewed as a
function of the parameters.

The statistic converges asymptotically to a𝜒2 distribution— if the null hypothesis happens
to be true. Finite sample behaviour is generally unknown.
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Inference— comparingmodels

We can compare model specifications using

𝑅2, the proportion of explained variance,
for non‐linear models there are various pseudo 𝑅2 measures,

the likelihood, ℒ, of a given model, or
information criteria (IC).

Many measures of model fit always increase with complexity — IC prefer parsimony.

Akaike information criterion

AIC = 2𝐾 − 2 log ℒ̂

Bayesian (or Schwarz) information criterion

BIC = 𝐾 log𝑁 − 2 log ℒ̂
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Other probability models

Probabilities are not the only limited dependent variables, and there is a range of other
specialised models. This includes the

poisson model for count variables,
e.g. 𝑌 ∈ {0, 1, 2, …} with votes,

tobit model for censored variables,
e.g. 𝑌 > 0 with forest loss,

heckit model for non‐random samples,
which uses the Heckman correction, modeling the sampling probability,

multinomial probit/logit model for categorical variables,
e.g. 𝑌 ∈ {agree, disagree, unsure}.
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Count data

Count data takes on non‐negative integer values (0, 1, 2, …) and often has a substantial
number of zero outcomes (‘zero‐inflated’).

To build a model for this kind of data, we could
think of a latent Normal variable behind 𝑌 ,
or use a discrete probability distribution.

The Poisson distribution is an example; we can use it to
express the probability that a given number of events oc‐
currs in a fixed interval.

In 1898, Ladislaus Bortkiewicz used the Poisson dis‐
tribution when investigating the number of soldiers in
the Prussian army that were killed by horse kicks.

Figure 14: The Count von Count.
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Poisson distribution

The probability mass function (PMF) of the Poisson distribution is

ℙ􏿴𝑌 = 𝑦𝑖 | 𝜆􏿷 =
𝜆𝑦𝑖 exp−𝜆

𝑦𝑖!
, 𝑦𝑖 = 0, 1, 2, … ,

where the parameter 𝜆 is also the expectation 𝔼[𝑌] and variance𝕍(𝑌).
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Poissonmodel

We generally expect that the expectation, i.e. the mean 𝜆 = 𝔼􏿮𝐲􏿱, depends on other
variables. Consider a Poisson model with dependent mean; let

𝜆 = 𝔼􏿮𝐲 | 𝐗; 𝛽􏿱 = exp 􏿺𝐗𝛽􏿽,

where we use the exponential function to ensure that 𝔼􏿮𝐲 | 𝐗􏿱 > 0. We get

ℙ􏿴𝑌 = 𝑦𝑖 | 𝑥𝑖; 𝛽􏿷 =
exp 􏿺𝑥𝑖𝛽􏿽

𝑦𝑖
exp− exp 􏿺𝑥𝑖𝛽􏿽

𝑦𝑖!
, 𝑦𝑖 = 0, 1, 2, … ,

describing the probability of each observation.
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Censored and truncated data

We speak of censored (truncated) data if the data is censored (truncated) at some
threshold for some reason. This could be

square meters in a 30m² cell (𝑌 ∈ [0, 30]),
wages (𝑌 ∈ [0,∞]),
temperature in degree Celsius (𝑌 ∈ [−273.15,∞]), et cetera.

Censoring can be

absolute (no values beyond the threshold), or
relative (selection problem beyond the threshold).

It can happen by design or due to missing data. Censored (and especially truncated)
data often has a substantial number of observations at the threshold.
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Outlook

We covered a number of limited dependent variables, why they are important, and how
we can learn more using more general, non‐linear models.

Next up, we will learn how to conduct maximum likelihood estimation, which

allows us to efficiently estimate general models,
provides a connection to more advanced topics (such as shrinkage).

Afterwards, we’ll proceed with more op‐
tions and methods for causal inference, in‐
cluding matching, quasi‐experiments, and re‐
gression discontinuities.

Figure 15: Poisson models are contentious.
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Maximum likelihood estimation



Estimation of general models

We need a good way of estimating more general models, such as

𝐲 = 𝐺(𝐗, 𝜷) + 𝐞.

These models (e.g. the logit model) are not linear in parameters — OLS isn’t even BLUE.

When minimising 𝐞′𝐞, we have to consider 𝐾 (𝜷 ∈ ℝ𝐾 ) partial derivatives,
𝜕𝐞′𝐞
𝜕𝛽𝑗

generally involves all 𝜷, and there is no closed form solution.

Non-linear least squares
Non‐linear least squares estimation is a conceptually straightforward approach. First,
we approximate with a linear model, and the refine the estimates iteratively. However,
estimates are generally not unique and inefficient.
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Maximum likelihood estimation

Maximum likelihood (ML) estimation is a method for estimating parameters. It works
by maximising a likelihood function, the joint probability distribution of the data as a
function of the parameters, given by

ℒ(𝜷) =
𝑁
􏾟
𝑖=1

ℙ􏿴𝐲 | 𝑋; 𝜷􏿷 .

We set 𝜷𝑀𝐿 so the observed data is most probable within our model.
The resulting ML estimator is consistent, asymptotically normal, and asymptotically
efficient in most cases.

The likelihoodℒ(𝜃|𝑋) itself is not a probability — we allow 𝜃 to vary, not𝑋 .
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TheML estimator

For computational convenience, we usually work with the log‐likelihood

ℓ(𝜷) = logℒ(𝜷) =
𝑁
􏾜
𝑖=1
logℙ􏿴𝐲 | 𝐗; 𝜷􏿷 .

𝜷𝑀𝐿 is then the estimate that maximises the log‐likelihood function.
The equation 𝜕ℓ(𝜷)

𝜕𝜷 = 0 generally has no closed form solution, and iterative
optimization algorithms are used instead.

Examples for iterative optimization are Gradient Descent
(based on the first derivative) and Newton’s method (which
also uses the second derivative).
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ML estimation for binary outcomes

A distributional assumption lies at the center of ML estimation. For binary outcomes,
where 𝑌 ∈ {0, 1}), we can use the Bernoulli distribution with probability mass function

𝑓 (𝑦𝑖 | 𝑝) = 𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖 .

We have ℙ(𝑌 = 1) = 𝑝 = 1 − ℙ(𝑌 = 0) for the parameter 𝑝, and — due to
independence of observations — the joint probability is

𝑓 (𝑦1, 𝑦2, … , 𝑦𝑁 | 𝑝) =
𝑁
􏾟
𝑖=1

𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖 .

The Bernoulli distribution is a special case of the Binomial distribution with a single trial.
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The log-likelihood for Bernoulli variables

With a Bernoulli outcome, we can use the likelihood

ℒ(𝑝) =
𝑁
􏾟
𝑖=1

𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖 .

To find 𝑝𝑀𝐿, we need to maximise the likelihood by solving for
𝜕𝐿
𝜕𝑝 = 0.

The product is difficult to differentiate — we’d prefer a sum.
We can use properties of the logarithm, and maximise the log‐likelihood instead.
We need to solve

𝜕ℓ
𝜕𝑝 =

𝜕∑𝑖 log[𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖]
𝜕𝑝 = 0.
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Deriving the ML estimator i

To obtain the ML estimate, we first reformulate the log‐likelihood as

ℓ(𝑝) =
𝑁
􏾜
𝑖=1
log[𝑝𝑦𝑖(1 − 𝑝)1−𝑦𝑖]

=
𝑁
􏾜
𝑖=1

𝑦𝑖 log 𝑝 + (1 − 𝑦𝑖) log(1 − 𝑝)

= 𝑁𝐲̄ log 𝑝 + 𝑁(1 − 𝐲̄) log(1 − 𝑝).

Where the last step relates the summation to the mean —∑𝑖 𝑦𝑖 = 𝑁𝐲̄).

Next, we need to differentiate with respect to 𝑝.
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Deriving the ML estimator ii

We know that
ℓ(𝑝) = 𝑁𝐲̄ log 𝑝 + 𝑁(1 − 𝐲̄) log(1 − 𝑝),

which we need to differentiate with respect to 𝑝, and solve for 𝑝𝑀𝐿.

𝜕ℓ(𝑝)
𝜕𝑝 = 𝑁𝐲̄

𝑝 − 𝑁(1 − 𝐲̄)
1 − 𝑝 = 0

𝑁𝐲̄
𝑝 = 𝑁(1 − 𝐲̄)

1 − 𝑝
𝐲̄(1 − 𝑝) = 𝑝(1 − 𝐲̄)

𝑝𝑀𝐿 = 𝐲̄.

The maximum likelihood estimate is the average number of occurences in the sample.
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ML estimation for logit models

With logit models, we have a Bernoulli outcome 𝑌 , and model the probability 𝑝 using the
logistic function. We have the following PMF

ℙ􏿴𝑌 = 𝑦𝑖 | 𝑥𝑖􏿷 = 𝑝𝑦𝑖 (1 − 𝑝)1−𝑦𝑖

= 􏿶
𝑒𝑥𝑖𝜷

1 + 𝑒𝑥𝑖𝜷 􏿹
𝑦𝑖

􏿶1 −
𝑒𝑥𝑖𝜷

1 + 𝑒𝑥𝑖𝜷 􏿹
1−𝑦𝑖

and set 𝜷𝑀𝐿 by (numerically) maximising the log‐likelihood

ℓ(𝜷) =
𝑁
􏾜
𝑖=1

􏿮− log 􏿴1 + 𝑒𝑥𝑖𝜷􏿷 + 𝑦𝑖𝑥𝑖𝜷􏿱 .
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ML estimation for Poissonmodels

With Poisson models, we have a Poisson outcome, and model the mean 𝜆 using an
exponential function. We have the following PMF

ℙ􏿴𝑌 = 𝑦𝑖 | 𝑥𝑖􏿷 =
exp 􏿺𝑥𝑖𝜷􏿽

𝑦𝑖
exp− exp 􏿺𝑥𝑖𝜷􏿽

𝑦𝑖!
.

and set 𝜷𝑀𝐿 by (numerically) maximising the log‐likelihood

ℓ(𝜷) =
𝑁
􏾜
𝑖=1

𝑦𝑖𝑥𝑖𝜷 − exp 􏿺𝑥𝑖𝜷􏿽.

The log‐likelihood measures fit, relating the fitted (𝑥𝑖𝜷) to the observed value (𝑦𝑖).
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The linear model andML estimation

Consider the standard linear model with normally distributed errors, given by

𝐲 = 𝐗𝜷 + 𝐞, 𝐞 ∼𝒩(0, 𝜎2).

This implies that 𝐲 ∼𝒩(𝐗𝜷, 𝜎2). So far, we’ve used ordinary least squares to estimate
the parameters — now we can also use maximum likelihood estimation.

Normal distribution
The Normal distribution, denoted by𝒩(𝜇, 𝜎2), has the probability density function

𝑓 (𝑥 | 𝜇, 𝜎2) = 1
√2𝜎2𝜋

exp􏿼−
(𝑥 − 𝜇)2
2𝜎2 􏿿 .
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Normal probability density function
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Figure 16: An𝒩(1, 1) density, and 50 draws from it.
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Deriving the ML estimator

We can get the likelihood function from the PDF

ℒ(𝜷, 𝜎2) = 1

(2𝜋)
𝑛
2𝜎𝑛

exp􏿼
−1
2𝜎2 (𝐲 − 𝐗𝜷)′(𝐲 − 𝐗𝜷)􏿿 .

To obtain estimates, we will need the log‐likelihood

ℓ(𝜷, 𝜎2) = 𝑁
2 log(2𝜋) − 𝑁 log 𝜎 − 1

2𝜎2
􏿴𝐲 − 𝐗𝜷􏿷

′
􏿴𝐲 − 𝐗𝜷􏿷.

We will focus on 𝜷𝑀𝐿 — notice how the last term measures the squared deviations.
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We will focus on 𝜷𝑀𝐿 — notice how the last term measures the squared deviations.
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Likelihood function with one coefficient
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Figure 17: Visualisation of the log‐likelihood for simulated data with one coefficient — ℓ(𝛽).
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Likelihood functions as a contour plot

Figure 18: Visualisation of the log‐likelihood for simulated data with two coefficients — ℓ(𝛽, 𝜃).
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Themaximum likelihood

To find 𝜷𝑀𝐿, we need to maximise the log‐likelihood

ℓ(𝜷, 𝜎2) = 𝑁
2 log(2𝜋) − 𝑁 log 𝜎 − 1

2𝜎2
􏿴𝐲 − 𝐗𝜷􏿷

′
􏿴𝐲 − 𝐗𝜷􏿷 .

When taking the derivative, the first two elements drop out, and we have

𝜕ℓ(𝜷, 𝜎2)
𝜕𝜷 = −2𝜎−2 􏿴−2𝐗′𝐲 + 2𝐗′𝐗𝜷􏿷 .

We obtain 𝜷𝑀𝐿 from
𝜕ℓ(𝜷,𝜎2)

𝜕𝜷 = 0, and
check whether ℓ(𝜷, 𝜎2) is maximal by checking the second derivative.

OLS andML estimation
For the linear model with Normal errors, the OLS and ML estimates of 𝜷 coincide.
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Shrinkage estimators— the LASSO

Let’s discard the constraint of unbiased estimators.

Theoretically, there’s an unlimited number of regressors; most are irrelevant.
We only want to keep important regressors, and pull coefficients towards the mean
— recall the phenomenon of regression to the mean.

How can we achieve this in the linear model?

̂𝜷 = min
𝜷

􏿻􏿴𝐲 − 𝐗𝜷􏿷
′
􏿴𝐲 − 𝐗𝜷􏿷􏿾

= min
𝜷

􏿻􏿴𝐲 − 𝐗𝜷􏿷
′
􏿴𝐲 − 𝐗𝜷􏿷 + 𝜆|𝜷|􏿾 .

We can introduce various penalty terms to punish larger coefficent values.
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Maximum likelihood estimation

ML estimators are based on the probability distribution of 𝑌 .
We learn about the

parameters of this underlying distribution,
conditional on the data we observe and the chosen distribution.

To find a ML estimator we

1. model the probability of each observation,
2. derive the joint probability of all observations,
3. consider the joint probability as a function of its parameters 𝜃, conditional on the

data𝒟 — this gives us the likelihood function ℒ,
4. maximise the log‐likelihood, ℓ(𝜃|𝒟), with respect to 𝜃.
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Matching



Matching observations

Recall the fundamental problem of causal inference — we can’t observe the
counterfactual to our treatment. With matching, we try to find close matches to the
treated units within the data. Specifically, we

divide the dataset in treated and control units,
find the ones with the closest matching characteristics between each of them,
prune away unmatched observations without creating selection bias,
perform our analysis with the matched dataset.

This procedure allows us to create a sample with balanced confounders, emulating the
balance induced by completely randomized or blocked experiments. Matcing is an
intuitive and parsimonious alternative to highly elaborate specifications and can aid
with causal inference.
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Methods for matching

There are many methods for matching that differ in their notion of closeness.

Figure 19: Illustration of a full and matched sample (by King, 2015).
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Propensity score matching

Assume you know the propensity of being treated for every unit. We could use this
information to counteract any selection biases.

Propensity score matching (PSM) looks to estimate this propensity, and use it to match
observations. We estimate the treatment propensity, and match control and treatment
units with similar propensity scores, emulating a fully randomised experiment.

−3 −2 −1 0 1 2 3

However, PSM is a problematic method for matching (King and Nielsen 2019), it

1. throws away information by using only a single dimension — the propensity score,
2. suffers from the propensity score paradox — random pruning causes imbalance.
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Distance matching

Some alternatives, such asMahalanobis distance matching (MDM), use some distance
between observations to find matches.

Figure 20: MDM matching (by King, 2015)
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MDMmatches

MDM uses the Mahalanobis distance; observations further than some boundary, or
caliper, are pruned.

Figure 21: MDM matching (by King, 2015)
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Coarsened exact matching

Coarsened exact matching (CEM) approximates a fully‐blocked experiment. It works by
coarsening explanatory variables to some degree, i.e. separating values into bins.

Figure 22: CEM matching (by King, 2015)
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CEMmatches

CEM then sorts observations into strata with unique values for all variables on the
coarsened scale. Strata without treated or controlled observations are then pruned.

Figure 23: CEM matching (by King, 2015)
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Quasi-experiments



Natural experiments

A natural experiment is a study where an experimental setting is induced by nature or
other factors outside our control.

It is an observational study with properties of randomised experiments.
This provides a good basis for causal inference, and
doesn’t suffer from potential issues of a conducting an experiment, such as

cost,
ethics
…

Economic research often relies on natural experiments.

The sickle cell trait can be seen as a long‐run natural experiment for the health effects of
malaria — it provides some protection against it, but leads to sickle cell disease.
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Figure 24: Map of cholera cases and the Broad Street water pump in London (Snow, 1954). 303/324



Figure 25: Alexander Pirnie drawing the first number of the Vietnam draft lottery in 1969.
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Regression discontinuity

A regression discontinuity design (RDD) is another quasi‐experimental design.
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How does RDDwork?

When there is a sharp cutoff in treatment assignment, we may be able to

compare observations on either side of this discontinuity.
We learn about the local treatment effect.

Example— scholarships
Consider a merit‐based scholarship as an example.

We cannot compare recipients and non‐recipients, since high‐performers are more
likely to receive the scholarship.
If the scholarship is awarded at a cutoff grade of 1.5 we might be able to use this
cutoff to compare students near it.
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Requirements for a RDD

For an ideal RDD, all other relevant variables are continuous at the cutoff,
and there is sufficient randomness in the assignment around the cutoff.

Moreover, we need to correctly model the functional form.

Issues
In practice, these requirements are hard to check, since

effects are often contaminated by other factors, and
we never truly know the functional form.

A common problem are RDD studies that “discover” a discontinuity by overfitting the
data. Many potential discontinuities act on multiple factors (e.g. age thresholds) and
treatment can often be influenced (e.g. in exams).
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Figure 26: An artificial discontinuity by overfitting with a polynomial regression.
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Panel data



Panel data

We talk of panel (or longitudinal) data when we have repeated measurements of our
individual units over time. This means, we have three dimensions of data — variables,
individual units, and time.

N
M

T

Figure 27: Panel structure.
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Examples

Individual Date Income Age Education

A 2020 1200 20 medium
A 2021 1300 21 medium
B 2020 1800 24 medium
B 2021 2600 25 high

Some panel datasets are the EU‐SILC (Statistics on Income and Living Conditions), HFCS
(Household Finance and Consumption Survey), and Google’s data on you.
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Why panel data?

Panel data and models have some useful advantages:

more data (more is more),
potential efficiency gains,
follows relationships over time,
considers unobserved individual‐ or time‐specific effects.

Some potential drawbacks include panel mortality (individuals drop out), panel effects
(impacts of repeated data collection), cross‐section dependency, decreasing marginal
returns of observations.
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Pooled cross sections

We can imagine a panel model by stacking cross sectional models as:

⎛
⎜
⎜
⎜
⎜
⎝

y1
y2
⋮
y𝑇

⎞
⎟
⎟
⎟
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⎛
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⎜
⎜
⎝

X1
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⋮
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⎜
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𝛽2
⋮
𝛽𝑇

⎞
⎟
⎟
⎟
⎟
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+

⎛
⎜
⎜
⎜
⎜
⎝

e1
e2
⋮
e𝑇

⎞
⎟
⎟
⎟
⎟
⎠

, (1)

We repeat the model for every date and usually assume constant coefficients, i.e.

𝑦𝑖𝑡 = 𝑥𝑖𝑡𝛽 + 𝑒𝑖𝑡.

The result is referred to as pooled cross‐sections.
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Applications of panel data

Pooled cross‐sections can be very useful for causal inference — we can

isolate individual‐specific, and
time‐specific effects.

Moreover, panel data opens up an additional research design.

Example— deforestation
Consider the effects of opening up a mine in the Amazon on deforestation.

We have a treatment group nearby, and a control group of unaffected forest.
In an experiment, we’d randomly assign the mine for comparability.

314/324



Difference-in-differences

If we have panel data, we can use a difference‐in‐differences (diff‐in‐diff) approach.
For this, we divide our data in four and estimate

𝑦𝑖𝑡 = 𝛼 + 𝑥after𝜙 + 𝑥treated𝜃 + 𝑥interacted𝛿 + …

— Before After Difference

Control 𝛼 𝛼 + 𝜙 𝜙
Treatment 𝛼 + 𝜃 𝛼 + 𝜃 + 𝜙 + 𝛿 𝜙 + 𝛿
Difference 𝜃 𝜃 + 𝛿 𝛿

We obtain the treatment effect 𝛿̂ from the difference of the differences.
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Figure 28: Effect estimation using diff‐in‐diff. Outcome of the control group below in teal, of the
treatment group in red.
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Controlling for unobservables

With panel data we can account for unobserved or unobservable variables. Consider

𝑦𝑖𝑡 = 𝛼 + 𝜓period
𝑡 + 𝜇individual𝑖 + … + 𝜀𝑖𝑡.

We can include intercepts for each period and individual — the fixed effects. The baseline
for individual 𝑖 at time 𝑡 is

𝛼 + 𝜓𝑡 + 𝜇𝑖.

The error 𝜀𝑖𝑡 only contains unobserved factors that vary over time and individual. The
parameter 𝜇2, e.g., captures all effects on individual 2 that do not vary over time, even if
they are unobservable.
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Fixed effect model

Consider a fixed effect model of crime rates in the US for 1982 and 1987

𝑦crim𝑖𝑡 = 𝛼 + 𝜓1987
𝑡 + 𝜇state𝑖 + 𝑥unemp𝑖𝑡 𝛽 + 𝜀𝑖𝑡.

The time‐parameter 𝜓 captures the effect of the year 1987 against 1982. The
individual‐parameter 𝜇𝑖 captures the effect of states.

Unobservable effects may correlate with explanatory variables without violating the
exogeneity assumption — this means we may only need to control for variables that vary
over time and individuals.
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Changing relationships

Panel data also allows us to investigate whether coefficients differ over certain groups,
e.g. time. The Chow test allows this by dividing the data into two groups 𝑎 and 𝑏 and
checking whether 𝛽𝑎 = 𝛽𝑏.

One example are structural breaks over time, where relations change after some event.
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