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Abstract

Influential sets are sets of observations that have considerable impact on econo-
metric results. In this paper, we present a disciplined and insightful method for
assessing the sensitivity of regression-based inference to influential sets. We ex-
plore algorithmic approaches to identify influential sets, discuss interpretation,
and assess the sensitivity of earlier studies to these sets. We apply our method to
established results in development economics, and show that results are driven
by small influential sets. Identifying and analyzing these sets can reveal potential
omitted variable bias, unobserved heterogeneity, a lack of external validity, and
technical limitations of the methodological approach used.
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1 Introduction

Econometric methods are an important instrument of scientific discovery, and are vital
for the design of evidence-based policy. By approximating real-world phenomena, they
provide us with empirical insights, allow us to test theories, and facilitate prediction.
The sensitivity of these methods to modeling assumptions is a long-standing and active
subject of research. The economic literature tends to focus on sensitivity along the
horizontal dimension of the data, which is related to the functional form of model
specifications. Examples go back to extreme bounds analysis (Leamer, 1983, 1985), and
include model averaging (Steel, 2020), elaborate research designs (Angrist and Pischke,
2010), and randomization (Athey and Imbens, 2017). The sensitivity of inference to
certain sets of observations, i.e., the vertical dimension of the data, however, has received
less attention in the modern economic literature.

In this paper, we investigate the sensitivity of regression-based results to influential
sets of observations. It is well-known that individual influential observations can drive
the results of regression analysis (Cook, 1979). Influential sets may be substantially
more impactful, but have not received much attention in the literature due to their
inherent computational complexity. The empirical and theoretical analysis of these
sets is intractable in most of the relevant cases, and approximate methods need to be
used to identify them and assess their impact. Approximations, however, are prone to
underestimate the impacts of influential sets due to two phenomena — joint influence
and masking. Consider, for instance, the influence of sets of observations on the positive
slope of the regression line presented in Figure 1. The three observations on the top
right, marked ‘a’, are clearly influential, especially when considered as a set (see the top
right panel). After removing them, the positive slope is driven by the observations on
the center right, marked ‘b’. This influential set, however, is masked — we only uncover
its influence after accounting for set ‘a’ (see the bottom panels of Figure 1). These two
phenomena affect the precision and accuracy of approximate methods for assessing
influential sets of observations.

Themain contribution of this paper is a disciplined and insightful method to identify
and analyze influential sets in linear regression models, and to assess the sensitivity
of inferential results to them. Our approach focuses on sets that are influential with
respect to a particular quantity of interest, such as the size or significance of a coefficient.
This way, we narrow down candidate sets to ones that (1) are immediately relevant to
the question at hand, (2) allow for insightful interpretation, and (3) can be identified
reliably. Our sensitivity check works by first identifying influential sets that overturn
specific inferential results of interest, such as a positive sign or a significance threshold.
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Figure 1: Influential sets in a univariate regression
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Univariate regression, with two sets of observations that are influential on the positive slope estimate, demonstrating joint influence
and masking. In the top right panel, we can see that removing any member of a jointly influential set increases the influence of
other members. In the bottom row, we can see the effects of masking. After removing set ‘a’ (left), the sign of the slope switches,
and the influence of set ‘b’ is unmasked. After accounting for the influential set marked ‘b’ (bottom right), the slope is significantly
negative.
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Then, we analyze the identified influential sets, and investigate the characteristics of
their members. We show that this analysis can provide insightful summary statistics,
and can inform us about omitted variable bias, unobserved heterogeneity, a lack of
external validity, and technical limitations of the methodological approach and data.

To implement our approach, we explore three computationally tractable algorithms
to identify and account for influential sets. All three algorithms are straightforward
to use, and differ in how they balance accuracy and precision against computational
complexity. The first algorithm relies on the full-sample influence of individual obser-
vations for both the identification of sets and the estimation of their influence. This
makes it cheap to compute, but comes at the price of accuracy and precision, as the
algorithm cannot account for joint influence and masking. The second algorithm iden-
tifies influential sets in the same way, but computes the influence of a given set of
observations exactly following a binary search pattern. This makes it extremely efficient
computationally, and allows it to account for joint influence, but not masking. The third
algorithm alleviates concerns with joint influence and masking by adaptively building
an influential set. This way, joint influence is accounted for, and masked observations
can be revealed, improving the accuracy and precision. We illustrate the performance
of these algorithms using an illustrative example, and simulation exercises.

We revisit four established results in the field of development economics to demon-
strate the virtue and wide applicability of our approach. We find that the mediating
effect of rugged geography on income per capita in Africa (Nunn and Puga, 2012) and
the development impact of the Tsetse fly (Alsan, 2015) hinge on small influential sets.
Closer inspection of these sets and the underlying data suggest the existence of omitted
confounders and issues related to limitations of the data employed. In a large-scale
application to the origins of mistrust (Nunn and Wantchekon, 2011), influential sets
are concentrated in terms of location, indicating heterogeneity in the effects considered.
Technical sensitivity of instrumental variable estimates is illustrated in an application to
the effects of skilled migration (Droller, 2018). Overall, we find that influential sets are
prevalent in practice, and that they present an insightful sensitivity check in practice.

Our analysis builds on a long history of studies on the role of influential observations
and outliers in the statistical and econometric literature.1 In this paper, we specifically
build upon the notion of influence (going back to at least Cook, 1979) and the influence
function of Hampel et al. (2005), which we generalize to sets of observations. There
are many approaches to identify and account for single influential observations (see
Chatterjee and Hadi, 1986, for a review), and a number of useful results that allow for

1See, for example, Box (1953); Belsley et al. (1980); Hampel et al. (2005); Hansen and Sargent (2011);
Huber (1964); Huber and Ronchetti (2009); Maronna et al. (2019); Rousseeuw and Leroy (1987).
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efficient computation (e.g. Belsley et al., 1980; Phillips, 1977) that we build upon directly.
In linear regression, single influential observations are generally easy to identify but
limited in impact; most existing approaches to assess and account for sensitivity to
these are of a holistic nature (this includes the statistics of Cook, 1979; Belsley et al.,
1980, and approaches like winsorizing or trimming). The impact of influential sets of
observations, however, is mostly sidestepped by the literature.

When sensitivity to subsets of the data is suspected, themost prominent statistical ap-
proach to correct for their influence is robust regression (see, e.g., Huber and Ronchetti,
2009; Lewis et al., 2021). Robust estimators, such as M-estimators and S-estimators, are
(up to a breakdown point) resistant to a number of arbitrarily influential observation.
Nonetheless, robust estimation is rarely used in practice. Important practical drawbacks
(noted, for instance, in Stigler, 2010) include the elusive notion of robustness to arbitrary
contamination, the loss of information, and the largely arbitrary choice of hyperpa-
rameters, which can have sizeable effects on the results.2 By contrast, the approach
proposed in this paper is directly relevant to a result of interest, involves limited choices
beyond the influence function, and is both highly informative and readily interpretable.
Moreover, we show that the types of sensitivity uncovered by robust estimation and
influential sets differ considerably in practice.

An important andwidely used approach that accounts for data sensitivity is based on
resampling methods, such as the Bootstrap (Efron and Stein, 1981), the Jackknife (Efron
and Tibshirani, 1994), or cross-validation (Picard and Cook, 1984). Thesemethods build
upon random samples of the data to produce estimates, and are regularly used formodel
selection and to quantify the overall uncertainty around estimates.3 Our approach is
related to these methods to the extent that we aim at uncovering the subsample that
represents the worst-case scenario in terms of the robustness of the inferential result of
interest. Another approach in the literature is concerned with detecting outliers. As
opposed to influential observations, outliers are notwell-defined (that is, they do not rely
on an explicit influence function). This complicates the task of detection considerably,
and makes (unsupervised) clustering methods a common choice for dealing with
outliers in regression analysis (see e.g. Hyndman et al., 2015; Kaufman and Rousseeuw,
2009; Shotwell and Slate, 2011). Our preferred, adaptive algorithm is closely related
to earlier sequential procedures for identifying multiple outliers (including ones by
Belsley et al., 1980; Hadi, 1992; Hadi and Simonoff, 1993).

An important strand of the literature focuses on identifying or accounting for multi-
ple influential observations (or outliers that are defined in more concrete terms). Going

2A ‘monitoring’ approach (Riani et al., 2014; Cerioli et al., 2018) can partly alleviate the last two issues.
3Model averaging methods can also be used to assess data sensitivity in a similar fashion (Steel, 2020).
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back to at least Belsley et al. (1980), these approaches are often based on the influence
of individual observations for the full-sample. A notable, recent example is the work
of Broderick et al. (2021), who approximate the influence of a set of observations by
accumulating individual influences that are computed using a linear approximation;
this approach serves as an inspiration for our first algorithm. Another approach is
taken by Peña and Yohai (1995), who employ the influence matrix as a heuristic to
detect influential sets. We add to this literature in two ways. First, we formalize three
algorithms for detecting influential sets and assess their susceptibility to the impacts
of joint influence and masking. Our novel (second) algorithm considerably improves
upon recent approaches by yielding precise results at negligible computational cost,
and can readily be generalized beyond our linear setting. The second algorithm, which
we formalize and implement in an efficient way, further improves accuracy and is rarely
prohibitive to compute for linear models. Second, we show how analysis of the uncov-
ered influential sets can yield deep insights into the issue at hand, and provide a guide
for interpreting these sets.

By applying our approach to identify and assess influential sets, we contribute
additional insights to the development and applied econometric literature literatures.
First, we find that the differential effect of ruggedness in Africa as a determinant of
economic development, which is considered a mediator for the impact of the slave
trades (Nunn and Puga, 2012), may be a statistical artifact. By contrast, we find the
impact of the slave trades on mistrust in modern-day Western Africa, which was subject
to the Atlantic slave trades, to be considerably larger than previously thought (Nunn
and Wantchekon, 2011). Next, our findings emphasize the longstanding need for more
insightful summaries of the data (see Anscombe, 1973). We show that summaries
based on influential sets could be an important addition to the regression statistics that
are usually assessed. We also find that instrumental variable regression is particularly
sensitive to influential sets. Simulation results (presented in the Appendix) show con-
siderably more sensitivity than for ordinary least squares, even with strong instruments.
This result complements the findings of Young (2022), who documents high suscepti-
bility of instrumental variable regression to leverage. In addition, we document that
poverty convergence across countries is not particularly sensitive to influential sets of
observations (see the Appendix).

The remainder of this paper is structured as follows. In Section 2, we establish the
theoretical framework. We present and illustrate the algorithmic approaches to identify
and assess influential sets in Section 3. In Section 4, we demonstrate the analysis of
influential sets by revisiting established empirical results on long-term development. We
discuss the interpretation of sensitivity to influential sets, and illustrate with additional
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applied examples in Section 5. In Section 6, we conclude. All codes and data used for
this paper are available online,4 and additional material is provided in the Appendix.

2 Theoretical framework

We start by providing the analytical framework upon which we build our influential
set identification algorithms. We define influential sets, jointly influential sets and
masking in this setting, and provide the link to popular measures of influence based on
influential sets of single observations.

2.1 Influential sets

Consider the linear regression model

y = Xβ + ε, (1)

where y is an N × 1 vector containing observations of the dependent variable, X is
an N × P matrix with P explanatory variables, β is a P × 1 vector of coefficients to
be estimated, and ε is an N × 1 vector of error terms with zero mean and unknown
covariance matrix Σ. We denote the ith observation (row) of y and X as yi and xi. The
deletion of an observation j is indicated with a subscript in parentheses, that is, y(j) is
the dependent vector without observation j.

A set of observations, S , is defined as a non-empty subset of the set of all observations,
i.e., S ⊂ S̃ = {s|s ∈ Z ∩ [1, N ]}. We use the shorthand Nα = dNαe to denote a fraction
α ∈ [0, 1] of the data, and indicate the cardinality of a set using a subscript, i.e., |Sα| = Nα.
The empty set is denoted by ∅ and the set of all sets of cardinality Nα by [S]α.

We are interested in the impact of removing influential sets of observations on λ,
some quantity of interest to the econometrician. A set of observations is an influential set,
if its omission has a large impact on λ, when compared to most other sets of equal size.
The impact of removing a set is measured with some (generalized) influence function
∆ of λ and of the sets, S and T that are compared. In our example from Figure 1, for
instance, we were interested in how the omission of sets of observations reduces the
positive estimate of the slope coefficient. For this purpose, we can set

λ(S) =
(
X′

(S)X(S)
)−1 X′

(S)y(S), (2)

∆(S,∅, λ) = − sign(λ(∅))× λ(S), (3)

4The repository at https://github.com/nk027/influential_sets includes all scripts, data, and
an R package with the approaches described in the paper (see Appendix A for more information).
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where we will suppress the dependence on λ and the default value T = ∅, and use the
shorthand λ(S) = λ(S) for simplicity.

To summarize the sensitivity of λ, we focus on the minimal influential set, which
we define as the smallest set whose omission achieves a select target impact on λ. We
formalize this set by first defining the maximally influential set, S∗

α, which achieves the
maximal influence for a given size of the omitted set, as

S∗
α = argmax

S∈[S]α
∆(S). (4)

We can then formally define the minimal influential set, S∗∗, with respect to the
target impact of choice, ∆∗, as follows

S∗∗ = S∗
argminα

s.t. ∆(S∗
α) ≥ ∆∗. (5)

One relevant example is the minimal influential set that achieves sign switch of the
slope in Figure 1, which can be achieved by setting ∆∗ = 0.

After obtaining a minimal influential set, we are interested in its size, both in abso-
lute terms and relative to the full sample size, and the characteristics of its members.
However, conclusively identifying such a set is computationally prohibitive—wewould
need to evaluate∆ for

(
N
Nα

)
potential sets. Instead, we rely on approximations for all but

the most trivial settings. To assess the quality of these approximations, we introduce
two concepts related to potential sources of error.

First, we define the notion of joint influence, which happens when a set of observa-
tions is jointly more influential than its members would be individually. Consider the
influence of an observation i, given by the shorthand δi = δi|∅ = ∆({i},∅). A jointly
influential set, U , satisfies δi|J � δi|∅ for all i ∈ U and non-empty J ⊂ U . The influence of
any member i increases substantially after the removal of other members, as illustrated
in the top right of Figure 1 for the jointly influential set ‘a’. Joint influence is a major
challenge for approximations, which rely on assessing a limited number of potential
sets.

Second, we define masking as the phenomenon where members of a maximally
influential set S∗

α are not identified by the estimated set Ŝ∗
α. This phenomenon can be

observed in the bottom row of Figure 1, where set ‘b’ is masked by ‘a’ when considering
sets of size four and above. Masking affects the accuracy of an approximation, and we
can quantify its severity via the difference in influence between the true and estimated
sets, or the cardinality of the set difference.

8



Influential Sets in Linear Regression

2.2 Computing influence estimates

The statistics literature is rich in results for identifying and dealingwith single influential
observations (see Chatterjee and Hadi, 1986, for a review). Effectively and efficiently
measuring influence is central to this pursuit, and there is a wide variety of interrelated
statistics serving this purpose. For most measures, the residuals (e = y − Xβ̂) and
the leverage (the diagonal elements of the ‘hat matrix’, H = X (X′X)−1 X′) are pivotal
elements. One notable example directly measures the influence of an observation i on
the OLS estimate of β, and can be expressed as

δi = λ(∅) − λ({i}) =
(X′X)−1 x′

iei
1− hi

, (6)

where ei and hi are the residual and leverage of observation i. This well-known quan-
tity, termed DFBETAi by Belsley et al. (1980), facilitates the quick evaluation of the
individual influence of all observations. Similar results are available for estimates of
(spherical) variances, coefficient standard errors (Belsley et al., 1980), and two-stage
least squares (2SLS) estimates (Phillips, 1977). Such convenient forms, together with
efficient updating formulae (for example, to evaluate (X′

(i)X(i))
−1) facilitate the compu-

tation of the influence, ∆. However, due to the combinatorial complexity, identifying a
minimal influential set generally remains insurmountable, and approximate approaches
are needed.5

3 Algorithms to assess influential sets

In this section, we formalize three simple algorithms for approximating minimal influ-
ential sets and their influence. Before we introduce the algorithms in detail, we illustrate
their behavior for our example in Figure 1. The first algorithm, Algorithm 0, exclusively
uses the full-sample influence of individual observations. As a result, it is extremely
cheap to compute, but suffers in terms of accuracy and precision. Algorithm 1 identifies
influential sets in the same way, but computes their influence exactly. This allows it to
account for joint influence for little overhead. The last algorithm, Algorithm 2, uses a
simple adaptive procedure for identifying influential sets, improving its precision and
accuracy at slightly increased computational cost. Lastly, we discuss computational con-

5Consider a total number of observations of N = 1, 000 and potential sets of size up to Nα = 10.
Assume that every calculation of λ needs one microsecond — very roughly the time needed to compute
the cross-product of a four-by-four matrix. Enumeration would require about 8.35 billion years, or 1.8
times the age of the Earth, which is safely out of scope for non-tenured researchers.
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cerns and the use of approximations for the identification and assessment of influential
sets.6

3.1 An illustration

We illustrate the performance of the three algorithms via the example in Figure 1. Recall
that we are interested in assessing how the omission of sets of observations reduces the
slope of the OLS regression line, as expressed by Equations 2 and 3. The set marked ‘a’
(in the top right of the scatter plot) is clearly influential. This is generally reflected by
standard diagnostics, and all three algorithms correctly identify this influential set. For
the set marked ‘b’ (in the center right), which is initially masked by the first set, this
is not the case. Neither Algorithm 0 nor Algorithm 1 identify any of its elements. The
adaptive nature of Algorithm 2, however, allows it to identify the masked observations
and account for their influence.

Algorithms  & 0 1

⟶ set order ⟶

Algorithm 2

3 removed

7 removed

Figure 2: Influential sets with Algorithms 0, 1, and Algorithm 2. The order of the identified
observations is color-coded and indicated by a cross (×, first three) and a crosshair (+, next
four). The dashed gray line indicates the full-sample regression line. The solid and dashed lines
are the implied regression lines after accounting for influential sets of sizes three and seven.
Thin dotted lines show the influence of intermediate steps for Algorithms 0 and 2.

The results of applying the three algorithms to identify and account for influential
sets of size three and seven are depicted in Figure 2. In the left panel, we can see that

6Additional results comparing the performance of the algorithms in simulated and applied settings
are provided in Section B3 of the Appendix.
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Algorithms 0 and 1 are affected by masking after set ‘a’ is identified. Algorithm 1 pre-
cisely accounts for this first set, but subsequent removals are relatively inconsequential.
Meanwhile, Algorithm 0 cannot account for the joint influence of set ‘a’, underestimating
the influence after the first removal. This is illustrated by the intermediate slopes (thin
dotted lines), which decrease in impact after each removal. In the right panel, we can see
that Algorithm 2 does not suffer from these problems. The implied slopes are accurate
and precise, and intermediate steps clearly show how the joint influence of sets increases
the impacts of individual removals. For these reasons, Algorithm 2 is our preferred
choice for later empirical applications.

3.2 Algorithm 0: Initial approximation

Algorithm 0 builds on the full-sample influence of single observations. Maximally
influential sets are proposed based on the order of individual, full-sample influences,
and their influence is approximated by accumulating these individual influences. In
our linear setting, it generalizes the approach of Broderick et al. (2021), who use a linear
approximation to compute ∆ and accumulate influences.7

Algorithm 0: Initial approximation.

set the function ∆, the target ∆∗, and the maximum size U , let S ← ∅;
compute δi = ∆({i}) for all i ∈ S̃;
while ∆(S) < ∆∗ do

let S ← S ∪ argmaxj δj , for j 6∈ S ;
let ∆(S)←

∑
k∈S δk;

if |S| ≥ U then return unsuccessful;
end
return S,∆(S);

The algorithm works as follows. First, we set an influence function, target value, and
a maximum size for the minimal influential set. Next, we compute the initial influence δi
for each i. As discussed above, this computation is relatively cheap in many interesting
cases; otherwise, approximations could be used. The first iterated step is the proposal
of a maximally influential set, which is based on the union of the observations with
the largest individual influences. The influence of this proposed set is then estimated
by summing the individual influences of observations in the set. These two steps are
repeated until the specified target or the maximum size is reached.

7See Section B2 in the Appendix for information on the approach used by Broderick et al. (2021).
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The method embodied in Algorithm 0 can yield striking results, as demonstrated by
the findings of Broderick et al. (2021). However, its low computational complexity comes
at the price of precision and accuracy when influential observations are present. First,
the algorithm is prone to underestimate joint influence due to summing up individual
influences. Second, the estimated influences are not updated, and observations may
remain masked behind the influence of already removed observations.

3.3 Algorithm 1: Initial binary search

Algorithm 1 rectifies the precision issues of Algorithm 0, while retaining high computa-
tional efficiency. Similar to Algorithm 0, the identification of maximally influential sets
is based on the ordering of the individual, full-sample influences. The influence of these
proposed sets, however, is calculated exactly. In order to guarantee low computational
cost, the algorithm follows a binary search pattern when proposing sets.

Algorithm 1: Initial search.

set the function ∆, the target ∆∗, and the maximum size U , let L← 0;
compute δi = ∆({i}) for all i ∈ S̃;
while L ≤ U do

let M ← b(L+ U)/2c;
let S be the union of the indices of the M largest δi;
compute ∆(S);
if ∆(S) < ∆∗ then let L←M + 1;
else let U ←M − 1;

end
if ∆(S) ≥ ∆∗ then return S,∆(S);
else return unsuccessful;

Algorithm 1 works by iteratively setting the size of proposed sets, M , to halve a
search interval [L,U ]. In each step, the influence of the proposed set is computed exactly,
and the bounds of the search interval are updated depending on the influence of the
proposed set. If the target is reached, the upper bound is decreased toM − 1, otherwise
the lower bound is increased to M + 1. If an approximate minimal influential set exists
in the search interval, it is found after O(logU) steps. As a result, Algorithm 1 adds
negligible computational overhead over Algorithm 0, making this divide-and-conquer
approach practical for computationally prohibitive problems.

By computing ∆ explicitly, Algorithm 1 can account for joint influence, and yields
precise influence estimates for a given set. However, its accuracy is not guaranteed, as
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masking remains an issue. Because influence estimates are not updated, influential
observations are likely to remain hidden behind already removed observations. The
algorithm also relies on the (previously implicit) assumption that the influence of
estimated maximally influential sets increases monotonically with the size of the set.
The next algorithm abstracts from this assumption and is designed to explicitly address
masking.

3.4 Algorithm 2: Adaptive approximation

The third algorithm (Algorithm 2) uses a simple adaptive procedure for identifying the
minimal influential set. The maximally influential sets are constructed iteratively, using
updated influence estimates. This facilitates the discovery of masked observations,
improving accuracy. The adaptive nature of this algorithm allows for good accuracy
and precision, while retaining computational tractability.

Algorithm 2: Adaptive approximation.

choose the function ∆, the target ∆∗, and the maximum size U , let S ← ∅;
while ∆(S) < ∆∗ do

compute ∆(S ∪ j), for all j ∈ S̃ − S ;
let S ← S ∪ argmaxj ∆(S ∪ j);
if |S| ≥ U then return unsuccessful;

end
return S,∆(S);

Algorithm 2 starts by computing the influence of all individual observations. Then,
maximally influential sets are proposed adaptively, by forming the union of the previous
set (starting with the empty set) and the observation with the highest influence (at
each step). This is repeated until a minimal influential set is found, or the maximal size
is reached. The algorithmic complexity is linear in the cardinality of the set and falls
well short of, e.g., a Jackknife approach. By computing individual influences after every
removal, this approach reduces the risk of masking problems and allows us to more
reliably investigate sensitivity to influential sets.

3.5 Approximations and computational concerns

The algorithms presented above are computationally straightforward, with complexities
that are constant, logarithmic, and linear in the size of the minimal influential set. In our
linear setting, most quantities of interest rely on matrix factorization, with a complexity
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of O(NP 2). This means that the computation of the influence function, ∆ dominates
the overall complexity in practice. Fortunately, many quantities of interest, such as
coefficients and standard errors, can be computed efficiently using algebraic results
(for instance, Equation 6) and updating formulae (for cross products, inverses, and
factorizations). Together with optimization of the underlying linear algebra, this allows
us to quickly assess the sensitivity to influential sets in a wide range of applications.

Further speed gains can be realized with approximate methods. When the number
of covariates is large, it can be helpful to marginalize out nuisance covariates before
computing influence measures. Approximate methods are another option to speed up
computation. There is, for instance, no convenient method to update clustered standard
errors, and their computation becomes prohibitive with large N or P . By using classical
standard errors to propose sets, we can facilitate sensitivity checks at large scales. Such
simplifications, however, can be problematic if a large part of the influence is driven by
the element which is simplified to achieve computational gains.

In our setting, one example is the linear approximation to the influence of individual
observations on coefficient estimates (i.e. to Equation 6) that Broderick et al. (2021)
propose. This approximation is given by δi ≈ (X′X)−1 x′

iei, and disregards the role of
leverage (see Section B2 of the Appendix for more information). As a result, the approx-
imation underestimates the influence of all observations, and features a particularly
large downward bias for observations with high leverage, and thus (ceteris paribus)
high influence.

4 Influential sets and economic development

In this section, we investigate the sensitivity of empirical results related to the determi-
nants of long-term economic development to influential sets. We concentrate on the
influence on the t value of the main estimate of interest. For the thresholds, we follow
Broderick et al. (2021) in reporting minimal influential sets that induce (1) a loss of
significance at a given level, (2) an estimate of the opposite sign, and (3) a significant
estimate of the opposite sign. We use Algorithm 2 unless mentioned otherwise.8

Identifying the driving forces of economic development has been a central endeavor
in development economics over the last decades. Factors such as colonial experiences
(Acemoglu et al., 2001), the slave trades (Nunn, 2008), precolonial institutions and
centralization (Gennaioli and Rainer, 2007; Michalopoulos and Papaioannou, 2013),
as well as migration (Tabellini, 2020) are known to play a fundamental role. The
pathways through which these determinants affect development today are an important

8See Sections B3 and C4 of the Appendix for further material on the comparison of algorithms.
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subject of research (Spolaore and Wacziarg, 2013). Three empirical studies on economic
development in Africa find that the slave trades affect development via ruggedness
(Nunn and Puga, 2012) and interpersonal trust (Nunn andWantchekon, 2011), and that
the Tsetse fly affects precolonial centralization (Alsan, 2015). Another important study
on the Age of Mass Migration uses an instrumental variable approach to show the long-
term impacts of skilled migration (Droller, 2018). Below, we assess the sensitivity of the
empirical findings presented in these three studies to influential sets of observations.

4.1 Geography, development, and omitted variables

Exploiting cross-country differences, Nunn and Puga (2012) estimate linear regressions
that relate GDP per capita to the ruggedness of terrain and other control variables. They
allow for heterogeneity in the effect of ruggedness forAfrican countries via an interaction
term. Nunn and Puga (2012) find a significantly negative overall estimate of the effect
of ruggedness, and a significantly positive estimate for the additional effect in African
countries (see Table 1, Column 1). This differential effect is interpreted as rugged
geography offering protection against the slave trades, and thus counteracting the
negative effects of ruggedness on long-run economic development. The authors perform
rigorous checks to address the sensitivity of these results to influential observations,
and their findings appear to be robust. In particular, the results are unchanged when
omitting observations that exceed a threshold of |DFBETAi| > 2/N (following Belsley
et al., 1980), as well as the ten smallest and most rugged observations. In addition,
we find that robust M-estimates of the effect support this conclusion (see Table 1,
Column 2).

We investigate the sensitivity of this differential effect of ruggedness in Africa to
influential sets. In the row labeled ‘Thresholds’ of Table 1, we report the sizes of influen-
tial sets that induce (1) an insignificant estimate, (2) an estimate of the opposite sign (in
square brackets), and (3) a significant estimate of the opposite sign (in curly brackets)
for the coefficient of interest. We find that an influential set of two observations over-
turns the significance of the differential effect. An influential set of five observations is
enough to induce a sign-switch, and one of size eleven achieves a statistically significant
sign-switch.

To provide more context for these observations, we visualize the five most influential
ones in Figure 3, Panel A. Their influence is visualized in Panel B, which shows the
effect of each subsequent observation (indexed by the ISO code of the corresponding
country) on the coefficient’s t value. Starting at a value of 2.53, the t-value decreases
slightly with the removal of the most influential observation, which is of the Seychelles.
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Table 1: The differential effect of ruggedness in Africa
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Ruggedness, Africa† 0.321 0.325 0.190 0.215
(2.53) (2.46) (1.66) (1.63)

Ruggedness -0.231 -0.251 -0.231 -0.238
(-2.99) (-3.23) (-2.94) (-3.08)

Controls Yes Yes Yes Yes
Population in 1400 – – Yes –
Land area – – – Yes

Thresholds† 2[5]11 — –[3]6 –[4]8
N 170 170 168 170
R2 0.537 0.533 0.571 0.554

The row labeled ‘Thresholds’ reports the sizes of influential sets that induce a loss of significance (at the 5% level), [a sign flip],
and a significant sign flip of the coefficient that captures the differential effect of ruggedness in Africa (using Algorithm 2). The
‘Baseline’ column reproduces the results of Nunn and Puga (2012, see Table 1, Column 6) using OLS estimation, while ‘Robust’
uses robust M-estimation. The specifications labeled ‘Population’ and ‘Land area’ add the population level in the year 1400, and the
land area of the country (both in logs) as covariates. Coefficient estimates are reported with t values based on HC1 robust standard
errors in parentheses.
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Its influence (as indicated by the height of its ISO code in the visualization) appears
limited, but when using Algorithm 2 (on the left) we can clearly see that the influence
of subsequent removals increases considerably. This pattern is indicative of a jointly
influential set, which remains hidden from Algorithm 0 (on the right).

Figure 3: Two nations drive the blessing of bad geography
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Panel A: Influential nations and ruggedness Panel B: Influence estimates

Panel A visualizes ruggedness, the explanatory variable of interest, and the five most influential observations. Panel B shows the
cumulative reduction of the t value as observations (indicated with their ISO codes) are removed (from 2.53 at the top, to the
bottom of the respective observation) using Algorithms 2 (left) and 0 (right).

Sensitivity checks to influential sets can provide valuable insights, allowing us to
analyze the minimal influential set and the characteristics of its members. In this case,
the influence of the Seychelles casts doubts on the interpretation presented in Nunn and
Puga (2012). The island nation has only been inhabited permanently since the late 18th
century (Fauvel, 1909), and its ruggedness played no role in mediating the effects of
the slave trades. In addition, the five most influential nations are extraordinarily small
in terms of land area and population. This may indicate a survivorship bias, where
the inclusion of countries in the dataset is partly determined by land area, population,
geography, or economic success. Past population sizes are likely related to confounding
geographical features, and can also play an important role in mediating the impacts of
the slave trades. In Columns 3 and 4 of Table 1, we present the results of specifications
that include past population size and land area as additional controls. In these cases,
no significant differential effect of ruggedness on economic development can be found
for the African continent.
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4.2 Slave trades and the heterogeneous origins of mistrust

Nunn and Wantchekon (2011) analyze the role of the Atlantic and East African slave
trades as determinants of interpersonal trust, using individual-level survey data and
historical information on the slave trades. They regress measures of the trust of relatives
and neighbors (among others) on a measure of slave trade intensity, as well as a number
of individual and district-level covariates and fixed effects at the country level. The
design matrix of the regression model contains over 20,000 observations that span
several countries in sub-Saharan Africa, and a total of 78 regressors. Uncertainty is
quantified using standard errors that are clustered along ethnicity and district. The
authors find statistically and economically significant negative effects of the slave trades
on interpersonal trust. Their findings are robust to removing Kenya and Mali (which
were also impacted by the trans-Saharan and Red Sea slave trades) from the sample.

Table 2: The origins of mistrust

Trust of relatives Trust of neighbors
Pooled West | East Pooled West | East

Exports/area† -0.133 -0.145 -0.159 -0.168
(-3.68) (-3.84) (-4.67) (-4.48)

Exports/area, East 0.053 0.023
(0.96) (0.32)

Individual controls Yes Yes Yes Yes
District controls Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes

Thresholds† 105[380]656 78[301]532 161[425]768 133[323]527
N 20,062 7,549 | 12,513 20,027 7,523 | 12,504
Ethnicity clusters 185 62 | 123 185 62 | 123
District clusters 1,257 628 | 651 1,257 628 | 651
R2 0.133 0.199 | 0.097 0.156 0.228 | 0.117

The row labeled ‘Thresholds’ reports the sizes of influential sets that induce a loss of significance (at the 5% level), [a sign flip],
and a significant sign flip of the coefficient that captures the effect of the slave trades (measured as exports of slaves per area)
on trust (using Algorithm 2). The columns labeled ‘Pooled’ reproduce the results of Nunn and Wantchekon (2011, see Table 2,
Columns 1 and 2). The columns labeled ‘West | East’ estimate separate models for observations to the west and east of the 20°
Eastern meridian (thresholds refer to Western subset). Coefficient estimates are reported with t values based on two-way clustered
standard errors in parentheses.

For this analysis, a sensitivity check based on the influential sets is computationally
challenging, since no updating formula for two-way clustered standard errors exists.
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To carry out our analysis, we only cluster standard errors after the removal of an
observation, and not for proposed removals. We reproduce the empirical results of
Nunn and Wantchekon (2011) in Table 2, and find that an influential set of size 105
(0.5% of the sample) induces a loss of significance of the estimated effect of the slave
trades on trust of relatives, while 380 removals (1.9% of the sample) lead to a sign-flip
that becomes significant after 656 removals (3.3% of the sample) for the trust of relatives.
Results are similar for the trust of neighbors.

An analysis of these influential sets shows that 536 of the 600 most influential
observations (89.3%) stem from three West African nations: Benin, Nigeria, and Ghana
(marked with black borders in Figure 3, see also Table S2 in the Appendix for more
details). These nations were major centers of the Atlantic slave trade, and their large
influence may suggest differences in impacts between the Atlantic and East-African
slave trades. When dividing the dataset into a Western and Eastern sample (with the
20° Eastern meridian as the dividing line), we find a significantly negative effect for
the Western sample, and an insignificant effect for the Eastern sample (see Table 2,
Columns 2 and 4). This result is consistent with the literature, which suggests larger
impacts from the Atlantic slave trade on economic development (see Nunn, 2008).

4.3 The concentrated effects of the Tsetse fly

The Tsetse fly is an important vector of disease and considered a hindrance to early
economic development. Alsan (2015) empirically investigates this detrimental effect,
concentrating on its role as a determinant of agricultural practices, urbanization, and
institutions. The empirical analysis is based on regressing various outcomes at the ethnic
group level on a Tsetse suitability index (TSI) and a number of controls, clustering
standard errors at the province level. Using ethnicity-level data, Alsan (2015) finds
significant detrimental effects of the TSI across the board, with precolonial centralization
as the major channel affecting present economic development. These results are robust
to perturbations of the TSI and to corrections aimed at assessing the negative selection
bias that may occur due to more developed ethnic groups displacing less developed
ones.

We reproduce these results in Table 3, and investigate the sensitivity of the estimated
effects to the sample. First, we focus on the sensitivity to influential sets. We find that
the significance of results is induced by few observations, ranging from one (for the
variable measuring whether a centralized state was present) to 33 (for the possession
of large domesticated animals). Influential sets of sizes between 17 and 79 induce
significant results of the opposite signs. The sensitivities of the empirical results in
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Table 3: The effects of the Tsetse fly
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TSI† -0.231 -0.09 -0.057 0.206 -0.745 0.101 -0.075
(-5.47) (-3.29) (-2.54) (3.41) (-3.25) (2.51) (-2.12)

Controls Yes Yes Yes Yes Yes Yes Yes

Thresholds† 33[58]79 7[25]41 3[12]17 12[30]48 9[27]42 4[22]35 1[16]30
N 484 485 484 315 398 446 467
Clusters 44 44 44 43 43 44 44
R2 0.296 0.268 0.462 0.285 0.254 0.178 0.139

The row labeled ‘Thresholds’ reports the sizes of influential sets that induce a loss of significance (at the 5% level), [a sign flip],
and a significant sign flip of the coefficient that captures the effect of the TSI on the respective dependent variable. The dependent
variables are binary and continuous, and measure whether a precolonial ethnic group (1) possessed large domesticated ‘Animals’,
(2) adopted ‘Intensive’ agriculture, (3) adopted the ‘Plow’, (4) had ‘Female’ participation in agriculture, (5) log population
‘Density’, (6) practiced indigenous ‘Slavery’, and (7) had a ‘Central’ized state. Coefficient estimates are reported with t values
based on clustered standard errors in parentheses.

Alsan (2015) to excluding small sets of observations is pronounced, with a possible
exception for the effects on the domestication of large animals. The findings of Alsan
(2015) are supported by a relatively small amount of data, which may stem from a lack
of variation in the outcome variables. In spite of the reasonable sample size, the six
binary outcomes are relatively rare (the plow adoption, for example, only occurred for
37 of the 484 observations).

For comparison, we use robust M-estimation, and find that five of the seven spec-
ifications are effectively unchanged (see Table S3 in the Appendix for the estimation
results). Two specifications (those referring to plow adoption and indigenous slavery
as outcomes) yield a pathological fit. We also repeat the empirical analysis using a high-
breakdown S-estimator. The effects on population density (which are not particularly
robust to influential sets) remain unchanged. Meanwhile, the six other specifications
yield a pathological fit, and between 106 and 286 observations (or 22 and 91 percent
of the sample) are flagged as outliers. Thus, conclusions based on robust estimators
depend on the type of estimator, and can differ strongly from ones based on influential
sets. While robust estimators also flag sets of impactful observations, these tend to be
larger than the influential sets obtained with the methods presented here, and are not
as immediately relevant to a particular inferential result of interest.
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4.4 Migration, instrumental variables, and influential sets

Migration reshapes global populations and, as a result, economic and cultural structures.
In a recent study, Droller (2018) investigates the long-term impacts of European migra-
tion to Argentina in the late 19th and early 20th century. He uses a shift-share instrument
(Borusyak et al., 2022; Goldsmith-Pinkham et al., 2020), to identify the causal effect
of the share of European migration on GDP per capita in 2000. The sample includes
136 counties in the provinces of Buenos Aires, Santa Fe, Córdoba, and Entre Rios. The
results in Droller (2018) show considerable impacts of skilled European migrants, who
played an important role in industrialization, on GDP per capita, education outcomes,
and skilled labor. The results are shown to be robust to a number of controls and to
changing the construction of the instrument.

Table 4: The long-term migration impacts on development

Baseline Plain
logGDP/capita ∼ 1st stage 2SLS 1st stage 2SLS

European share 5.778 6.35
(3.40) (4.31)

Instrument 0.251 0.281
(6.01) (4.84)

Geographic controls Yes Yes Yes Yes
Socioeconomic controls Yes Yes – –

Thresholds† 10[18]26 5[11]27〈18〉 10[18]31 6[11]32〈18〉
N 136 136 136 136
R2 0.816 0.622 0.688 0.591

The row named ‘Thresholds’ gives the numbers of observation necessary to remove significance (at the 5% level), [flip the
sign], and significantly flip the sign of either the shift-share instrument (in columns labelled ‘1st stage’), or the effects of
the share of European migrants (as reflected by 2SLS estimates); the angled brackets indicate the number of removals until
〈2SLS estimates are numerically unstable〉. The columns labelled ‘Baseline’ reproduce the ‘Specification 2’ in Table 4 of Droller
(2018), the ones labelled ‘Plain’ reproduce ‘Specification 1’. Coefficients are reported with t values based on HC0 robust standard
errors in parentheses.

We reproduce the results of Droller (2018) in Table 4, and identify influential sets
for both the first stage OLS, and the full 2SLS estimates. The first stage results are
comparatively insensitive to influential sets. Ten observations need to be removed for the
instrument to lose statistical significance in the first stage, suggesting a strong instrument.
For the 2SLS estimates of the baseline specification, we find that an influential set of
size five overturns significance, while one of size eleven induces a sign-switch. With
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an influential set of size 27, a significant sign-switch is induced. It is notable that a
mere 18 targeted removals (using ∆(S) = −|t(S)| as an influence function) can lead to
pathological numerical stability (illustrated in the Appendix, Figure S8) and eliminate
the relevance of the instrument.

This example illustrates how influential sets can arise from and unveil technical
limitations of an estimator for a given dataset. In this case, the instrument is based
on initial population shares that are shifted with total migrant flows. As a result, it
features a strong geographical component that creates strong correlation structures
between the instrument and the controls.9 In addition, the HC0 standard errors used
in the analysis are well-known to be susceptible to observations with high leverage
(Cribari-Neto et al., 2007). Most importantly, 2SLS estimates themselves may be more
susceptible to influential sets in general, due to the particular role of leverage (also
see Young, 2022). This finding is supported by the simulation results presented in
Section B4 of the Appendix.

5 Discussion

In the applications presented above, the main results appeared sensitive to influential
sets of observations. Analysis of the nature of these influential sets helped reveal prob-
lems related to omitted variable bias, heterogeneity, or limited support from the data.
However, the question of how to interpret minimal influential sets in general remains
unanswered. In this section, we elaborate on this issue, provide some additional illustra-
tions based on empirical examples, and give recommendations to applied researchers
that are interested in assessing the sensitivity of empirical results to influential sets of
observations.

There is no definite guide for the interpretation of influential sets. Expert knowledge
is vital, and the expected degree of sensitivity provides important context for the
interpretation. When searching for the proverbial needle in the haystack, we expect
high sensitivity to little data. On the other hand, we expect to find a good amount
of needles when investigating a sewing kit. Analyses of rare events such as disease
outbreaks or economic crises, as well as policy interventions that only affect a small
part of the population, are inherently sensitive to small subsets of the data. Phenomena
that appear more universally, such as convergence in growth or income levels across
economies, are expected to only be susceptible to the exclusion of larger fractions of

9The full-sample design matrix already displays a high degree of collinearity. Out of the fourteen
variables, three have variance inflation factors over ten (including the variable whose effect is of interest),
and eight have variance inflation factors over five.
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the data. Having a good understanding of the distribution and intensity of the effects
hypothesized (and of other underlying factors), allows us to gain valuable insights from
analyzing influential sets.

First, we consider the role of influential sets when analyzing rare, concentrated
phenomena. The effects of the slave trades onmistrust, for instance, are likely tomanifest
only in few impacted communities. Hence, the identified minimal influential set for a
loss of statistical significance (whose size is of 105 observations, which corresponds to
0.5% of the sample) does not appear to be particularly worrying, and arguably turns out
to be insightful, highlighting subsamples that are particularly affected. In the case of the
effects of the Tsetse fly, we consider the sensitivities to be more problematic. The small
cardinality of the influential sets identified imply that the results hinge on deceptively
few observations. More generally, influential sets can bring potential heterogeneities in
effects to the attention of the researcher, allowing for better summaries of the results and
the use ofmore appropriatemethods. One example concerns the impacts ofmicrocredits
on income (see Section B2 of the Appendix, and Broderick et al., 2021).

Second, we consider the context of more universal phenomena. One notable example
whose robustness has been discussed extensively in the literature concerns the conver-
gence of poverty rates across countries. Based on theoretical considerations regarding
income convergence and the link between mean income growth and poverty dynamics
(see Johnson and Papageorgiou, 2020, for a survey), global convergence in poverty
rates is expected in the data. Ravallion (2012), however, finds statistically insignificant
poverty convergence rates in a sample of 89 countries. As Crespo Cuaresma et al. (2016,
2022) point out, this result is likely to be driven by the idiosyncratic experience of East-
ern European countries. An analysis of influential sets in their setting reveals exactly
this result: an influential set formed by the observations of Belarus, Latvia, Ukraine,
and Poland is behind the lack of significance of the convergence estimate in Ravallion
(2012). An alternative specification (proposed by Crespo Cuaresma et al., 2016) leads to
estimates of the convergence rate that are less sensitive to influential sets of observations
(see Section C4 in the Appendix for more information on these results).

Finally, we consider the technical circumstances that give rise to an inferential result.
Three tightly connected cornerstones are the composition of the data, the identification
of parameters, and the estimation method employed. By their nature, OLS estimates
are sensitive to observations with high leverage and large residuals, while shrinkage
estimators will be less impacted by such data points. On the other hand, the compound
nature of 2SLS estimators makes them more susceptible to small influential sets, and
numerical instability of the estimators can quickly become a problem — as illustrated
in the context of long-term impacts of migration (as studied by Droller, 2018), and
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suggested by additional simulation results in Section B4 of the Appendix. Evidently,
technical sensitivity is related to the identification of parameters and to the variability
of the data. With 37 incidences, for instance, there is little variation to identify the effect
of the Tsetse fly on plow adoption, and the type of sensitivity is unsurprising. Technical
sensitivities are an inescapable feature of empirical analysis (see e.g. Young, 2022), and
the identification of influential sets can bring potential issues to our attention.

To summarize and provide more concrete recommendations, we can conclude that
sensitivity to influential sets of observations is highly context-dependent, and cannot be
used to attest robustness of a given result in a definitive manner. However, the analysis
of influential sets provides intuitive and insightful tools to shed light on a previously
ignored dimension of sensitivity. Minimal influential sets that are small in relative terms
may offer deeper insights, while ones that are small in cardinality, i.e. absolute terms,
may convey deeper issues. Results that are driven by a single influential observation
are rightly suspect; three or four thereof in an influential set likewise warrant a closer
look. To address this hidden dimension of sensitivity, summaries based on the size of
minimal influential sets behind the size and statistical significance of effects can help
increase the transparency and quality of empirical research.

6 Conclusions

In this paper, we presented a method to assess the sensitivity of inferential quantities in
linear regression to influential sets of observations. We showed how masking, where
certain observations obscure the influence of others, and joint influence complicate
sensitivity checks by inducing false negatives, and explored ways to address them. We
investigated three empirical studies on the determinants of economic development
in Africa for influential sets, and demonstrated the practical relevance and utility of
our approach. Our analysis showed that sensitivity to influential sets is widespread
among recent empirical studies in the field of development economics, and that their
assessment can lead to important insights concerning phenomena under scrutiny.

In applied econometrics, the sensitivity to (sets of) observations is still rarely assessed
in a systematic manner. Reinforced by our findings in this paper, we believe that
influential sets have a role to play in the communication of results. They can deliver
valuable insights, and summaries based on them, such as their absolute and relative size,
can serve as intuitive indicators to inform econometricians and their audience, improving
transparency in the communication of regression results. Two important advantages
over other measures such as Cook’s distance or robust estimates are their interpretability
and salience. Sensitivity is directly tied to a statistic of interest, and influential sets can
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easily be analyzed in detail. One disadvantage is that influential sets are necessarily
approximate, and robustness cannot be attested conclusively. Nonetheless, many false
negatives can be avoided at a reasonable computational cost, and approximations can
unveil important insights that would otherwise remain hidden in plain sight.

There are several pathways for future work building upon this contribution. On
the topic of identifying influential sets, there is certainly room for algorithms that
yield more accurate results at reasonably higher computational complexity. Potentially
fruitful approaches could use a probabilistic approach informed by heuristics that
are well-suited for the specific influence at hand. In a wider sense, there is a lack
of comprehensive indicators measuring the sensitivity of statistical inference to the
data. The approach presented here opens the door for further replication studies and
sensitivity checks of documented empirical phenomena, which may deliver valuable
insights for researchers and policymakers alike.
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Appendix
Hidden in Plain Sight: Influential Sets in Linear Regression

This appendix features three sections. InAppendixAweprovide replicationmaterial
and interactive demonstrations of the algorithms proposed in the paper, in Appendix B,
we provide additional technical details of the method, and in Appendix C we provide
additional results for the empirical applications assessed in the paper, as well as for an
example based on addressing poverty convergence across countries.

A Software and reproducibility

All code used in this paper, and a preliminary R package that implements the proposed
algorithms, are freely available at https://github.com/nk027/influence. In this
section, we (1) provide an interactive illustration of influential sets in univariate settings
for the browser, and (2) present ready-to-use code to install and load the package, and
use the methods on simulated and real-world data from the main text.

Interactive demonstration

An interactive illustration that can be used in most browsers (desktop and mobile) is
available at https://n027.shinyapps.io/influence/.

A1 Code

A script version of this code is available at https://short.wu.ac.at/influence_
demo.

# 0. Install and load the package -----

devtools::install_github("nk027/influence") # Install from GitHub

library("influence") # Load the package

# 1. Reproduce the toy example -----

set.seed(753) # Simulate some random (seeded) data ---

N <- 54 # We'll add 3 and 3 outliers to the end

x <- c(rnorm(N), rnorm(3, 6, 0.25), rnorm(3, 8, 0.25))

y <- c( # The outliers differ in effect

x[seq(N)] * -0.5 + rnorm(N, 0, 1),

x[seq(N + 1, N + 3)] * 0.1 + rnorm(3, 0, 0.1),

i
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x[seq(N + 4, N + 6)] * 0.4 + rnorm(3, 0, 0.1)

)

mdl <- lm(y ~ x - 1) # Fit a linear model (w/o intercept) ---

plot(x, y); abline(mdl, col = "darkgray", lwd = 2)

# Find the influential sets ---

mdl_sens <- sens(mdl) # Turns the first coef negative by default

mdl_sens$influence$id[1:7] # Adaptive results

mdl_sens$initial$id[1:7] # Initial approximation

# 2. Reproduce the ruggedness application -----

data <- read.csv("https://short.wu.ac.at/rugged_data") # Read from GitHub

data$diamonds <- with(data, gemstones / (land_area / 100))

data <- data[!is.na(data$rgdppc_2000), ] # Remove NAs beforehand

# Fit the baseline model ---

mdl <- lm(log(rgdppc_2000) ~ rugged * cont_africa +

diamonds * cont_africa + soil * cont_africa +

tropical * cont_africa + dist_coast * cont_africa, data = data)

summary(mdl) # Summary and non-robust SE

# lmtest::coeftest(mdl, vcov = sandwich::vcovHC(mdl, "HC1")) # Robust SE

# Assess influential sets ---

mdl_sens <- sens(mdl, # Target t of rugged:cont_africa at position 8

lambda = set_lambda("tstat", pos = 8, sign = sign(coef(mdl)[8])),

options = set_options("all"), # No approximations

cluster = seq_along(mdl$fitted) # For HC1 SE

)

plot(mdl_sens, threshold = qnorm(.975)) # Plot the path

summary(mdl_sens) # Get the summary of set sizes

data[mdl_sens$influence$id[seq(5)], ] # Check out the top 5 set

ii
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B Additional technical information

In this section, we provide additional technical details on the approximation of in-
fluential sets and their influence. First, we illustrate the underestimation caused by
aggregating individual, full-sample influences, as performed in Algorithm 0. Then, we
discuss approximations to the influence of sets of observations, using the approach of
Broderick et al. (2021) as an example. Next, we conduct a simulation exercise to compare
the three considered algorithms. Finally, we investigate technical aspects behind the
sensitivity of OLS and 2SLS estimators in a simulation exercise.

B1 Aggregating individual influences

Algorithm 0 approximates the influence of a set of observations by aggregating individ-
ual, full-sample influences of its members. When assessing the influence on coefficient
estimates, this method suffers from a downward bias. With every removal, the leverage
and hence the influence of observations increases and differences in leverage are exacer-
bated. The other driver of influence, residuals, decreases on average, complicating the
analysis. We illustrate the underestimation with a mean-only example.

Consider the model y = 1θ + ε, where we are interested in the influence on the
estimate of θ, which we are (without loss of generality) trying to decrease (∆(S) =

θ̂(∅) − θ̂(S)). We will show that the influence of a set of two influential observations y1
and y2 (i.e., they satisfy y1 ≥ y2 >

∑
i yi/N) is greater than the sum of influences of its

members. We need to show δ1 + δ2 < ∆({1, 2}), which is equivalent to

θ̂ − θ̂(1) + θ̂ − θ̂(2) < θ̂ − θ̂{(1,2)},∑
i yi
N
−
∑

i 6=1 yi +
∑

i 6=2 yi

N − 1
+

∑
i 6=1,2 yi

N − 2
< 0.

Since
∑

i 6=1 yi +
∑

i 6=2 yi =
∑

i yi +
∑

i 6=1,2 yi, we can redistribute the second term for(
1

N
− 1

N − 1

)∑
i

yi +

(
1

N − 2
− 1

N − 1

)∑
i 6=1,2

yi < 0.

By assumption, we know that
∑

i 6=1,2 yi +
2

N−2

∑
i 6=1,2 yi <

∑
i yi, which implies that(

1

N
− 1

N − 1

)∑
i

yi +

(
1

N − 2
− 1

N − 1

)∑
i 6=1,2

yi <

(
1

N
− 1

N − 1

)(∑
i 6=1,2

yi +
2

N − 2

∑
i 6=1,2

yi

)
+

(
1

N − 2
− 1

N − 1

)∑
i 6=1,2

yi = 0,

where the second term cancels out, completing the proof.
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If we use one or many regressors instead, the leverage of individual observations
will vary, and we can no longer directly determine the impact of removals on the error.
However, the overall problem is similar — any removal increases the leverage (and,
hence, the influence) of non-removed observations. This effect is particularly strong
when a high-leverage (and thus, influential) observation is removed.

B2 Assessing influence approximations

Estimates of the influence of sets of observations that ignore or approximate certain
elements required to compute the exact value enable computation in otherwise unfea-
sible settings. However, such computational shortcuts can become problematic if the
approximated elements are important determinants of the influence. One useful ap-
proximation is the Approximate Maximum Influence Perturbation (AMIP, by Broderick
et al., 2021), which we investigate in our context.10 We illustrate the limitations of this
approximation using a simulated example, and then discuss performance in the context
of seven studies of microcredits, which is featured in their contribution.11

-3.92 4.74

-6.82

0.00

6.17 Figure S1: Simulated data and least squares regression line.
The covariate (on the horizontal axis) and the innovations are
drawn from a t(8) distribution to allow for moderate leverage
and residuals.

Consider a univariate regression model based on N = 1, 000 observations, with a
slope parameter β = 1 and a zero intercept, where innovations and observations of
the covariate are drawn from t(8) distributions. This setup allows for moderately high
leverage and residuals, without inducing sensitivity to influential sets. The simulated
dependent variable is visualized in Figure S1. First, we illustrate the behavior of AMIP
when approximating influential sets and their influence with regard to the coefficient
estimate of β. Influence is given by

δAMIP
i = (x′x)−1

x′
iei ≈ DFBETAi =

(x′x)−1 x′
iei

1− hi

,

10Our analysis is based on the results in Broderick et al. (2021) and their implementation (kindly made
available at https://github.com/rgiordan/zaminfluence) as of commit 2d29fbb from 4/20/2022.

11We also consider AMIP in the simulation exercise in Section B3 and provide additional details.
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where x is a vector containing the covariate and e is a vector containing the residual.
The difference between δAMIP

i and DFBETAi is given by the suppression of the leverage
component of the measure, hi.

In Figure S2, we visualize the errors of approximation (when compared to the true
influence). In the left panel, we relate the AMIP error to the leverage of the dataset.
Since leverage and residuals are the only two factors driving influence in this simple
case, the use of AMIP leads to a downward bias (of (N − 1)−1 percent) in the estimation
of the influence. In the right panel, we relate the error to the true influence. As can
be seen, the magnitude of the error is particularly pronounced for highly influential
observations.
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Figure S2: Errors from using
AMIP to estimate influence on
coefficients (compared to the
exact value), plotted against
the exact leverage (left) and the
exact influence (right) of obser-
vations.

Next, we investigate the influence on the estimate of the standard error of the
coefficient estimate. To showcase their relationship, we regress the exact influence on
standard errors on its AMIP estimate. We find an R2 of 0.86, and a coefficient value
of 1.005 (t = 78.8), indicating good accuracy on average. However, the quality of the
approximation deteriorates considerably with increasing influence. Figure S3 visualizes
the relationship between the (standardized) regression residuals and the fitted values,
as well as leverage.
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Figure S3: Diagnostic plots for
the regression of exact obser-
vation influence on standard
errors onto their AMIP esti-
mates. Residuals are plotted
against fitted values (left) and
the leverage of the influence
(on the right).

Finally, we consider the influence on the significance of the parameter estimate.
Broderick et al. (2021) do not explicitly track influence on t values, but rather compute
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the influence on significance for a given t value by accumulating

δAMIP
i = βAMIP

(i) + tSEAMIP
(i) , (S1)

where βAMIP
(i) and SEAMIP

(i) are the AMIP estimates of the influence of observation i on the
estimate of β and its standard error. A minimal influential set is found by choosing a
direction for ∆ (i.e. significantly positive or negative), and setting the target value that
needs to be exceeded to one of β ± t × SE. We investigate this approximation below
using an empirical application.

Empirical application to microcredits

Many recent large-scale experimental studies evaluate the efficacy of microcredit as
a tool for alleviating poverty and facilitating economic development. Seven of these
studies are analyzed by Broderick et al. (2021), who assess the sensitivity of the average
treatment effect to removing observations. These are randomized control trials in Bosnia
and Herzegovina (Augsburg et al., 2015), Mongolia (Attanasio et al., 2015), Ethiopia
(Tarozzi et al., 2015), Mexico (Angelucci et al., 2015), Morocco (Crépon et al., 2015), the
Philippines (Karlan andZinman, 2011), and India (Banerjee et al., 2015). The underlying
model is a simple treatment effect model with a single (randomized) treatment dummy.

Table S1: Sensitivity of the average treatment effect of microcredits

BIH MON ETH MEX MOR PHI IND

Estimate β 37.53 -0.34 7.29 -4.55 17.54 66.56 16.72
t (1.90) (-1.53) (0.92) (-0.77) (1.54) (0.85) (1.41)

Sign-switch
A2 13 15 1 1 11 9 6
A0 14 16 1 1 11 9 6
B0 14 16 1 1 11 9 6

Significance
A2 35 34 10 9 29 38 28
A0 68 58 387 41 42 89 76
B0 40 38 66 15 30 58 32

Observations 1,195 961 3,113 16,560 5,498 1,113 6,863

The reported values are the sizes of influential sets that are needed to induce a sign-switch of the average treatment effect, and have
this sign-flip become significant (at the 5% level). We use Algorithms 2 (labelled ‘A2’) and 0 using exact influences (‘A0’) and
AMIP estimates (‘B0’). For the sign-switch, we explicitly target the influence on β, and not on the t values.

In Table S1, we present the full-sample estimates and the sizes of minimal influen-
tial sets that induce a sign-switch, and a significant sign-switch. We compare three
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approaches, based on (1) Algorithm 2, and Algorithm 0, using (2) exact influences
(‘A0’) and (3) AMIP estimates (‘B0’, reproducing Broderick et al., 2021). The results
for sign-switches are similar. By contrast, the sizes needed for a significant sign-switch
differ strongly. When particularly influential observations are present, only Algorithm 2
properly accounts for the effects of subsequent removals. Notably, the AMIP estimates
for inducing significance (following Equation S1) are considerably lower than one
would expect.12

0 1

-0.5

11.7
ETH

0 1

-40.9

0

8.2
MEX Figure S4: Household income in

thousands (vertical axis) and the
treatment dummy for the studies
on Ethiopia and Mexico. The re-
gression line is indicated in gray.

Thanks to randomization, the regression model underlying these results is remark-
ably simple, and Cook’s distance (or other standard checks) already indicate sensitivity
issues. The cases of Ethiopia and Mexico are particularly striking, (see Figure S4). Since
leverage plays a limited role in this regression setting, it appears as a suitable application
for Algorithm 1.

B3 Approximations in the presence of influential sets

Approaches for identifying influential sets that are based on approximations may suffer
precisely in the presence of such influential sets. To showcase this issue, we consider
the univariate regression from Section B2 (with β = 1, and innovations and covariates
drawn from t(8) distributions) with N = 100. We contaminate this setup with two
influential sets. For the first set, S0.02 we use a coefficient value of three and increase
covariate values by seven. For the second one, T0.03, the coefficient value is changed
to two and covariate values are increased by five. One realization of this process is
visualized in Figure S5.

We simulate 1,000 realizations of the process described above, and use four ap-
proaches to assess maximally influential sets (that lower coefficient estimates) of sizes

12This is peculiar, considering the downward biases of (1) accumulating influences, (2) the βAMIP
(i)

estimate in general, and (3) the estimates βAMIP
(i) and SEAMIP

(i) for influential observations.
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-2.2 0.0 7.6

-3.8

0.0

23.4 Figure S5: Simulated data and OLS regression lines for
the full-sample (in gray) and the uncontaminated sample
(dashed, in black). Members of the influential sets are
highlighted with color and indicated by a cross (×, for
S0.02) and a crosshair (+, for T0.03).

one to ten.13 These are Algorithms 2 (labelled ‘A2’) and 1 (‘A1’), as well as Algorithm 0,
with exact influences (‘A0’) and the AMIP estimate (‘B0’). The results are presented in
Figure S6. Both variants of Algorithm 0 perform relatively poorly, and do not recognize
the influence of the first influential set. Algorithm 1 performs better, but does not
reliably account for the influence of the second set. Estimates are considerably spread
out, and the target value (after five removals) of unity in the slope coefficient is missed
on average. The impact of removals levels off afterwards. By contrast, Algorithm 2
reliably finds both sets, and continues to identify impactful observations after their
removal.

0 2 5 10

2.2

2.0

1.8

1.5

1.0

0.5

B0

0 2 5 10

A0

0 2 5 10

A1

0 2 5 10

A2

Figure S6: Transparent lines indicate individual runs, thick lines the average results of (from
top to bottom) approach ‘B0’ (gray, dashed), ‘A0’ (green, solid), ‘A1’ (purple, dashed), and ‘A2’
(teal, solid). The vertical axis indicates estimates, the horizontal one the number of removals.

13The average estimates are βLS = 1.91, β̂(S) = 1.38, and β̂({S,T }) = 1.00. Interestingly, robust M-
estimation slightly undershoots the influence of the first set, at βM = 1.43.
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B4 Simulations and method sensitivity for OLS and 2SLS

Sensitivity to influential sets depends on the measure of influence and the estimator
used. We illustrate the role of the particular estimator by comparing influential sets
for OLS and 2SLS coefficient estimates. Again, we use the univariate regression from
Section B2 with N = 100,14 and add a repeated layer of this setup to construct the
instrumented variable. This gives us the following setup for 2SLS estimation

x = z+ u, with u ∼ t(8) and z ∼ t(8),

y = x+ e, with e ∼ t(8).

We use Algorithm 2 to find and assess the influence of maximally influential sets from
size one to 95 and replicate the exercise 1,000 times.

The results of our simulation exercise are visualized in Figure S7. On the vertical axes,
we depict the OLS (top) and 2SLS (bottom) estimates after removing influential sets
of increasing size (horizontal axis). OLS estimates remain stable until around twenty
observations are left in the sample. After this point, we observe a limited divergence of
estimates. The mean and median of the estimates stay close to each other throughout,
indicating no serious numerical problems. This is not the case for the 2SLS estimates,
where estimates start to diverge after about twenty removals. At 24 removals, we have
the first drop-out due to a lack of numerical stability, which we indicate with a green
cross on top. Before this, we can see a short spike in the mean estimate, which then
drifts off again. Overall, about three quarters of the simulated runs for 2SLS estimation
terminate prematurely due to a lack of numerical stability. At around 50 removals, more
than half of the remaining 2SLS estimates are pathological (see median estimate), with
vast fluctuations afterwards.

These results indicate that even with heavy-tailed errors and leverage, the OLS
estimates of an otherwise correctly specified linear regression model do not appear to
be particularly sensitive to influential sets. However, the 2SLS estimates appear to be
susceptible to influential sets and run into numerical stability problems, even with this
simple setup.

14That is, with β = 1, and innovations and covariates drawn from a t(8) distribution to allow for
moderately high errors and leverage. See Figure S5 for one realization.
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Figure S7: Transparent lines indicate (250 samples of) individual runs, thick lines indicate the
median (solid, blue), the 95% and 5% quantile (dashed), and the average (dotted, pink) of the
estimate. Crosses at the top of the 2SLS panel indicate drop-outs due to pathological numerical
stability (within machine precision). The vertical axes indicate estimates, the horizontal ones
the number of observations left.
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C Additional results and applications

In this section, we provide supporting material for the applications discussed in the
paper, and present one additional application to global cross-country poverty conver-
gence.

C1 The origins of mistrust

Table S2: Distribution of the top 600 most influential observations on trust in relatives

Benin Nigeria Ghana Other

Top 100 54 12 19 15
Top 101–200 85 6 5 4
Top 201–300 80 12 7 1
Top 301–400 52 27 14 7
Top 401-500 3 67 6 24
Top 501–600 3 69 15 13

Top 600 277 193 66 64

Summary of the origin countries of the 600 most influential observations affecting the parameter estimate associated with the slave
trades as a determinant of trust of relatives (see Column 1 of Table 2).

C2 The effects of the Tsetse fly

Table S3: The robust effects of the Tsetse fly

An
im
als

Int
en
siv
e

Plo
w

Fe
ma

le

De
ns
ity

Sla
ve
ry

Ce
ntr

ali
ze
d

M-estimate -0.259 -0.102 – 0.227 -0.761 – -0.080
(-5.53) (-3.29) – (3.71) (-3.00) – (-2.12)

S-estimate – – – – -0.761 – –
– – – – (-4.63) – –

N 484 485 484 315 398 446 467

Robust M- and S-estimates for the effects of the Tsetse fly (see Table 3). Coefficient estimates are reported with t values based on
clustered (for M-estimation) and classical (for S-estimation) standard errors in parentheses.
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C3 The long-term migration impacts on development
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Figure S8: Residualized data (with other covariates marginalized out) and regression lines
of the share of European migration against the shift-share instrument (see Table 4), before
(left) and after (right) removing the 18 observations that induce numerical instability of 2SLS
estimates.

C4 Poverty convergence and influential sets

Ravallion (2012) examines the convergence of poverty rates in a sample of 89 countries
using the following linear regression model

T−1
i (lnHit − lnHit−1) = α + β lnHit−1 + εit, (S2)

where Hit denotes the poverty headcount ratio in country i and time period t, and Ti

is the length of its observation period in years. In his study, Ravallion (2012) does
not detect poverty convergence, instead obtaining a positive, statistically insignificant
estimate of β, that we reproduce in Column 1 of Table S4.

This finding is likely due to idiosyncratic experiences in the former Eastern bloc.
As Crespo Cuaresma et al. (2022, 2016) point out, these countries exhibit low initial
poverty headcount ratios, implying that small absolute changes translate into large
growth rates. This is due to the log-transformation applied, and makes observations
of these countries particularly influential on OLS estimates. Crespo Cuaresma et al.
(2016) consider two alternative specifications that yield empirical evidence of poverty
convergence in the original dataset. These are (1) an extension of Equation S2 that
controls for the experience of Eastern European countries, and (2) a model that is based
on a semi-elastic relationship between poverty reduction and growth (see Klasen and
Misselhorn, 2008), effectively dropping the log-transformation from Equation S2. See
Table S4, Columns 2 and 3 for estimates.
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Table S4: Sensitivity of poverty convergence evidence to influential sets

Baseline Eastern Europe Alternative

Convergence† 0.006 -0.020 -0.019
(0.84) (-2.88) (-9.68)

Convergence, Eastern Europe – 0.044 –
– (2.12) –

Thresholds† –[1]{4} 3[10]{24} 26[32]{42}
N 89 89 124
R2 0.375 0.375 0.607

The row labeled ‘Thresholds’ reports the sizes of influential sets that induce a loss of significance (at the 5% level), [a sign flip],
and {a significant sign flip} of the coefficient that captures the poverty convergence effect (using Algorithm 2). The column
labelled ‘Baseline’ reproduces the results of Ravallion (2012), the one labelled ‘Eastern Europe’ adds an interaction term for Eastern
European countries. The column labelled ‘Alternative’ uses a different specification (proposed by Crespo Cuaresma et al., 2016)
and an updated dataset. Coefficients are reported with t values in parentheses.

We assess the sensitivity of poverty convergence to influential sets, starting with the
model in Equation S2. Figure S9 presents the data and regression line of Ravallion (2012),
as well as the minimal influential set needed to attain significant poverty convergence
(see ‘Thresholds’ in Table S4), as identified by Algorithm 2. The four members of
this set are Belarus, Latvia, Ukraine, and Poland.15 We investigate the two additional
specifications next. When accounting for the experience of Eastern Europe, we find
a significance threshold of three observations. For the alternative specification, we
source an updated dataset from PovCalNet,16 and find significant poverty convergence.
Algorithm 2 indicates thresholds at 26 (insignificance, see Figure S10), 32 (sign-flip),
and 42 (significant sign-flip) out of 124 observations. Algorithm 1 only indicate a loss
of significance after 56 removals (see Figure S10).

15Subsequent removals would be the Russian Federation, Lithuania, Estonia, and Macedonia. Notably,
Algorithm 0 indicates a threshold of sixteen removals, suggesting a relatively low degree of sensitivity of
the result.

16We use poverty headcounts (at $2 a day) from household surveys, only include countries that
are observed continuously for at least ten years, and use consumption- over income-based data when
available.
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Figure S9: Data and regression line for Raval-
lion (2012) before (solid line) and after (dashed
line) removing the influential set Ŝ∗4 (colored and
markedwith crosses, then crosshairs). The vertical
axis holds annualized log differences of poverty
headcount ratios; the horizontal axis the logarithm
of the initial poverty headcount ratio.
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Figure S10: Data and regression line for the alternative specification before (solid line) and
after (dashed line) accounting for an influential set of size 26 (colored and marked with crosses
×, then crosshairs +), using Algorithm 1 (top) and 2 (bottom).
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