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1 Introduction

Economic theory frequently suggests connections between individual units of observa-
tion. Connectivity and the resulting spillover effects between units lie at the heart of
pressing research questions in microeconomics (Ambrus et al., 2014; Chyn and Katz,
2021; Ioannides and Datcher Loury, 2004; Weidmann and Deming, 2021) and macroe-
conomics (Acemoglu, Akcigit, et al., 2016; Crespo Cuaresma et al., 2019; Gofman, 2017;
Rose, 2004). Good answers to these questions and deeper insights can be important for
education policy (Board and Meyer-ter-Vehn, 2021; Lin, 2010; Mele, 2020), labor mar-
ket outcomes (Beaman, 2012; Hensvik and Skans, 2016; Munshi, 2003), supply chain
management (Acemoglu, Carvalho, et al., 2012; Atalay, Hortaçsu, and Syverson, 2014;
Atalay, Hortaçsu, Roberts, et al., 2011; Kranton and Minehart, 2001), innovation (Bloom
et al., 2013; Ductor et al., 2014; König et al., 2019; Newman, 2001). However, em-
pirical studies of spillover effects abstract from the nature of connections and modeling
approaches are limited. Current econometric methods for analyzing spillover effects gen-
erally rely on holding the structure of connectivity fixed, thus obscuring uncertainties and
potentially distorting results.

This paper introduces an integrated model to jointly analyze both the structure and
consequences of connectivity between units. I propose a Bayesian hierarchical approach
to comprehensively address both issues. Suitable shrinkage priors allow for more nu-
anced assumptions; prior information is flexibly imposed where available and needed,
while important aspects of the model are freed up and learned from the data. The result-
ing model facilitates the explicit treatment of connectivity structures and spillovers in a
layered framework. As I demonstrate with an application to deforestation spillovers from
croplands in the Brazilian Amazon, this model avoids bias from misspecified connectivi-
ties, better reflecting reality and the surrounding uncertainties.

The main contribution of this paper is a framework for jointly estimating spillover/peer
effects and connectivity structures, i.e., spatial weight or adjacency matrices. A number
of earlier studies pursue similar goals in the spatial econometric (Debarsy and LeSage,
2020; Lam and Souza, 2020; Qu and L. Lee, 2015; Zhang and Yu, 2018) and the network
econometric (Goldsmith-Pinkham and Imbens, 2013; Hsieh and L. F. Lee, 2016; Johnsson
and Moon, 2021) literature. These studies generally adopt model averaging approaches,
and are limited to few discrete candidates for the connectivity structure. The hierarchical
setup that I propose in this paper eliminates this constraint. It provides a flexible and
nuanced way of modeling and estimating more general forms of connectivity, conveying
a more comprehensive picture of spillover effects. For this approach to work in practice,
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there are three main obstacles to overcome.
The first challenge lies in the forms of the connectivity structure themselves. Here, I

provide a unified framework for common forms of connectivity used in both the spatial
and network econometric literatures. I characterize connectivity as a weighted digraph,
and develop a functional approximation that nests many common connectivity structures.
This approximation places individual units in a metric space, augmented with a notion
of potential, and highlights the strong simplifying assumptions made in the literature.
Lastly, I derive conclusive bounds for the autoregressive parameter of overall connectivity
strength, ensuring non-singularity and stationarity of the model. This allows for more
flexible models that don’t impose a row-stochastic form a priori, and, as I demonstrate,
avoid bias from this potential misspecification of connectivity.

The second challenge is related to the curse of dimensionality. I address these using
suitable prior distributions that can induce regularization. With few exceptions (e.g. Lam
and Souza, 2020; de Paula et al., 2023), the notion of regularization is neglected in the
literature, and even Bayesian approaches generally use flat priors. I show how estab-
lished (expressed and implicit) priors are limited in their flexibility, impose strong infor-
mation in unsuspected dimensions, and often cannot accommodate the nuanced prior
information that is available. I introduce priors that can reflect this prior information,
e.g., location-based priors for the structural parameters in the connectivity function. For
the autoregressive parameter of overall connectivity strength, I propose a Beta-Gamma
mixture prior that can accommodate flexible shapes and provides sensible regularization
without distorting estimates. These priors facilitate the efficient estimation of connectiv-
ity parameters that have previously been fixed.

The third challenge is of a technical nature and concerns estimation of the model,
and the computations involved. Posterior inference relies on Markov chain Monte Carlo
(MCMC) sampling or variational methods, and the interdependence that results from
connectivity can make even simple models computationally prohibitive. Models with an
autoregressive term, in particular, rely on the evaluation of a costly Jacobian determinant.
In this paper, I focus on full posterior inference, and develop efficient sampling schemes
for the hierarchical and structural parameters, which facilitate the straightforward esti-
mation of extensible models. For such models, the Jacobian determinant features at least
one additional dimension, making established procedures obsolete. In order to still allow
for rapid and accurate estimation, I develop an adaptive Gaussian process approximation.
These optimizations allow for full Bayesian inference in spatial econometric models that
can be extended with little overhead.

The remainder of this paper is structured as follows.
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2 Methods

Let 𝒜 = {1,… ,𝑁} be a finite set of agents, for whom we observe some response 𝑌 ∈ ℝ
and a vector of characteristics 𝑋 ∈ ℝ𝑃 a total of 𝑇 times. For clarity and ease of notation,
we will assume that 𝑇 = 1 unless mentioned otherwise. We want to learn about the
relationship between the response and the characteristics, 𝑌 = 𝑓 (𝑋 ) + 𝜀, but suspect
that agents are not independent of each other. Instead, they are connected through a set
of links and form a network. To conduct inference, we need to impose structure on the
functional form of the relationship and the network.

2.1 Framework

To effectively model the network, we formalize it by assuming that it can be represented
as a graph. Specifically, by the weighted digraph 𝒢 = (𝒜,ℰ, 𝑔), where the links (or edges)
ℰ are induced by the link function

𝑔 ∶ 𝒜 × 𝒜 ↦ ℝ, (1)

meaning that 𝑔(𝑖, 𝑗) = 0 if and only if (𝑖, 𝑗) ∉ ℰ. This function is unknown, and will be the
target of our modeling efforts. We do not allow for self-links, i.e., 𝑔(𝑖, 𝑖) = 0 for all 𝑖 ∈ 𝒜,
and assume that there is one unique link between individual agents in this formulation.
This assumption can be prohibitive, so we informally introduce the generalization 𝑔𝑠,
which is specific to some situation 𝑠.

𝑖 𝑗

𝑘

0.5

1.0

1.0 0.5

Figure 1: Example of
a weighted digraph with
three agents {𝑖, 𝑗, 𝑘}.

Adjacencymatrix. The graph 𝒢 corresponds to an adjacency matrix 𝐆, which
is defined in terms of the link function, i.e., 𝑔𝑖𝑗 := 𝑔(𝑖, 𝑗). This allows us to
express the graph in a familiar form. The characteristic polynomial of the graph
is that of the adjacency matrix, and provides information on the structure of
the graph. In practice, we work with a normalized adjacency matrix, which
we denote as 𝐖 and will define later on. We use a subscript, such as 𝐖𝑠, to
indicate extensions of these definitions to the situation-specific variant.

2.1.1 Linear network model

We consider
𝐲 = 𝜆𝐖𝐲 +𝐖𝐗𝜽 + 𝐗𝜷 + 𝐞, (2)
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for the functional form of 𝑓. This model extends the classical linear model with two
network regressors—𝐖𝐲,𝐖𝐗. These relate to the responses and characteristics of linked
agents, and are constructed by pre-multiplication with the normalized adjacency matrix.
They give rise to two different types of spillover effects, i.e. effects of an agent 𝑖 on another
agent 𝑗 ≠ 𝑖. These types become apparent an alternative formulation,

𝐲 = (𝐈 − 𝜆𝐖)−1𝐳, (3)

𝐳 = 𝐖𝐗𝜽 + 𝐗𝜷 + 𝐞. (4)

Here, we introduce a latent variable 𝑍 that allows us to decompose the model in a network
filter and a nested linear model. The filter in Equation 3 captures the coordination behind
the equilibrium response of linked agents, and results in global spillovers between all con-
nected agents. The latent variable itself arises from the linear model Equation 4, which
captures local spillovers from the characteristics of directly connected agents. Global
spillovers are also referred to as endogenous peer effects, while local spillovers are also
known as exogenous or contextual (peer) effects.

The linear network model, as introduced here, reflects our earlier assumption of a
single, unique link between agents. To highlight this assumption, consider

𝐲𝑡 = 𝜆𝑡𝐖𝑡,𝑦𝐲𝑡 +𝐖𝑡,𝑥1
𝐱𝑡,1𝜃𝑡,1 +⋯+𝐖𝑡,𝑥𝑃

𝐱𝑡,𝑥𝑃𝜃𝑡,𝑥𝑃
+ 𝐗𝑡𝜷 + 𝐞𝑡,

where we allow for links to be time- and regressor-specific.

2.2 Hierarchical network model

Models of our link function suffer the curse of dimensionality, as the number of unknown
links increases with the square of the number of observed agents. This means that we
require additional information, either from observed data or in the form of structural
assumptions, to model the 𝒪(𝑁2) links in Equation 1.

Latent space. Let 𝒮 = (𝒫, 𝑤) be a latent space, where the set 𝒫 is equipped with a
notion of similarity, which is measured by the similarity function 𝑤. One way to view
this function is in relation to some metric, in which it is non-increasing. Assume that, for
some suitable similarity function, our agents can be embedded in such a latent space.
Then it is natural to model the network in terms of this function, i.e.

𝑔𝑖𝑗 = 𝑤(Ω, 𝑃𝑖, 𝑃𝑗) , (5)
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where Ω collects parameters of the function, and 𝑃𝑖 ∈ ℝ𝐷 denotes the latent position of
an agent 𝑖. This model effectively reduces the dimensionality of our target to the order
𝒪(𝑁), allowing us to flexibly work with limited or no actual network data.

2.2.1 Similarity

𝐴

𝐵

i
j

k

Figure 2: An example
of an embedding in a
two-dimensional space.

We will base our approach on the exponential similarity function

𝑤 := exp{𝛿 × −𝑑(𝑃𝑖, 𝑃𝑗)} , (6)

where the strength of links decays exponentially in the metric 𝑑. An alternate
form for settings without a clear notion of a metric space to orient on, will
be discussed later. For now, just note that 𝑑 can simply be replaced with an
absolute inner product. The sole parameter 𝛿 governs the speed of decay, and
serves as a point of departure for more flexible extensions.

i

j

k

𝐴 𝐵

𝜑

Figure 3: An example of
an embedding in a three-
dimensional space, where
the coordinates 𝐴, 𝐵 are aug-
mented by a measure of po-
tential 𝜑.

A natural extension of this setup addresses the issue of situation-specific
links. Consider, e.g., a network of trade relationships over time; over long
periods, the structure of such a network is unlikely to be static. By adapt-
ing 𝛿𝑡 to be time-specific, our model can, e.g., differentiate between, e.g.,
a decreasing importance of physical distance (perhaps due to increasing
trade in services) and a mere increase in spillover effects. Another ex-
tension addresses the possibility of asymmetric links, which are not ac-
commodated in our baseline model.1 Consider two latent characteristics
that govern an agent’s potential to link to and influence others, and their
susceptibility to being linked to and influenced. The extended similarity
function

exp{𝜑
−1
𝑖 ×−𝑑(𝑃𝑖, 𝑃𝑗) × 𝜓𝑗} , (7)

explicitly reflects an agent’s potential or popularity in 𝜑, and susceptibility, or gravity,
in 𝜓. These parameters allow for asymmetries by only affecting one direction of a link,
illustrated in Figure 3.

Specifications such as Equation 6, where similarity decays in the distance provide an
extensible baseline, and the composition of such functions offers even greater flexibility.
Consider, e.g., a composition of distance- and nearest-neighbor decay. By extending Equa-
tion 6 with an indicator 1(𝑑(𝑃𝑖, 𝑃𝑗) ⩽ 𝑘𝑖(𝜅)) , where 𝜅 indicates the number of neigh-
bors, and 𝑘𝑖 returns the distance to the 𝜅’th nearest neighbor, the specification can readily
1For examples of such links consider, e.g., the links behind potential policy spillovers following the 2024
elections in the United States and Austria, or the link embodied by this citation of Strogatz (2001).
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accommodate discontinuities. The positivity of links is another constraint to potentially
be loosened. In the context of our model, positivity implies that spillovers between all
linked agents are either positive or negative, i.e., they either cooperate or compete. One
way to address this within the baseline framework is via latent group structures, where
agents cooperate within their group, and do not link (or compete) with agents outside
of their group. Another, more direct option makes way with the underlying metric, and
uses an inner product instead. Consider the similarity function

sign(𝑃1 ⋅ 𝑃2) exp{𝛿 − |𝑃1 ⋅ 𝑃2|} ,

where the inner product natively allows for negative links, and is able capture group-
structures more directly.2

Positions. The latent positions are to be understood in the context of the similarity
function, and could be understood as coordinates in some Euclidean space, or as certain
homophilous characteristics. We will generally assume that some (noisy) measurement of
or approximation to these latent positions is available, e.g., from the centroid of a region.
Then it is useful to think of the latent positions in terms of

𝐏 = 𝐂𝝑 + 𝐕, (8)

where the matrix 𝐂 ∈ ℝ𝑁×𝐷 holds approximations to the latent positions. We will make
three simplifying assumptions to simplify our approach. First and second, we will assume
that 𝜗𝑑 = 1 for 𝑑 ⩽ �̂� ⩽ 𝐷 and zero otherwise. This implies that latent positions are
centered around the approximations, and emphasizes the fact that we may be dealing
with a low-rank approximation. In practice, the dimensionality will be determined by the
availability of good and conveniently measurable approximations. Third, we will assume
that 𝐕 ∼ N(𝟎, 𝜍

2𝐈), meaning that our latent positions follow a Gaussian distribution.
This interpretation of positions generalizes a large portion of approaches in the literature,
relations to which (and possible extensions) will be discussed later.

2.2.2 Related approaches

The hierarchical latent space approach proposed here has interesting parallels and re-
lations to other approaches in the literature. Most prominently, it provides a graph-
2To see this, consider these alternative expressions of the Euclidean metric, ||𝑥−𝑦||2 = ||𝑥||2+||𝑦||2−
2𝑥′𝑦, and the inner product, ||𝑥|| × ||𝑦|| × 𝑥′𝑦. In slight abuse of language, the former considers
length and adjusts for the angle (i.e., similarity in direction), while the latter relies on all three.
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theoretic foundation and explicit model for many of the the networks considered in the
spatial econometric literature. Spatial weights matrices are often constructed based on
distances between geographic location (see, e.g., Halleck Vega and Elhorst, 2015), and,
on a grid, even contiguity-based approaches (such as the one by Harari and Ferrara,
2018) can be viewed as binary decay between the centroids of cells.

Latent space models also have long been used to help model social networks (going
back to Hoff et al., 2002), and have been coupled with ‘aggregated relational data’ to
investigate spillover effects. There is also a number of other notable approaches that avoid
imposing a functional form on the network. Lewbel et al. (2023) approach Equation 2 as
the simultaneous equation model that it is, and show that links can be estimated directly
if the network is constrained to small sizes. de Paula et al. (2023) show that long panel
data and the imposition of sparsity can be used to recover links in small to moderately
sized networks.

2.3 Identification

When analyzing spillover effects in the context of Equation 2, our main concern are the
parameters 𝜆 and 𝜽, measuring the strength of global and local spillover effects. It is clear
that the interpretation of these parameters depends on the structure of the network; with
it being treated endogenously as part of the model, identification rests on the normaliza-
tion applied to the matrix 𝐖. Before diving into the normalization procedure, it is useful
to recall desirable goals of the procedure. These are

1. to facilitate interpretation of 𝜆, 𝜽,

2. to guarantee the stationarity of the network filter,

3. to preserve the structure of the network 𝒢.

First goal is straightforward — pinning parameters as reflecting partial effects is con-
venient The second goal arises from Equation 3, and is more peculiar and specific to the
model. Similar constraints on time series models.3 In practical terms, the third goal is
specific to our approach — identification of the network model’s parameters improves
estimation considerably. Injective normalization is what allows us to discover network
parameters from Equation 2. However, I will also argue that this goal has been glossed
over in terms of theory, and closer (or more flexible) ties between the underlying network
and its representation in the model are warranted in general.

3In terms of the motivating game theoretical model, this means that a unique and stable equilibrium exists.
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Figure 4: The row-
stochastic equivalent of
the graph in Figure 1;
note the strength of
highlighted links.

Rownormalization. A popular choice of normalization is row-normalization,
which scales 𝐖 to be row-stochastic. As we will see shortly, this procedure
allows us to identify both 𝜆 and 𝜽. However, in our general setup, row-
normalization entails the implicit assumption of equal out-degree centrality,
which alters the structure of the network. To illustrate, consider the row-
normalization visualized in Figure 4; the out-degrees of agents are trivially
equalized, affecting the overall network structure. For instance, eigenvector
centrality is equalized as well, and the influential position of agent 𝑖 is for-
feited.4

2.3.1 Scalar normalization

An alternative that avoids distorting the network structure is scalar-normalization of the
adjacency matrix.5 This normalization has been neglected in the literature, and no there
exist no conclusive results on the choice of normalizing factors. Next, we will remedy this
situation by showing that two different normalizing scalars need to be applied to identify
the two types of network effects.

When normalizing the endogenous network lag, we are looking for a range of 𝜆 that
guarantees the existence and stationarity of the filter in Equation 3. As we will see, this
range is determined by the spectral radius of the adjacency matrix, 𝜌(𝐆), making its
inverse a suitable normalizing factor.

Theorem 1. Let 𝐈 denote the identity matrix, and 𝛼 be a real scalar. Then (𝐈 − 𝛼𝐆) is
invertible for 𝛼 ∈ (𝜔

−1
min, 𝜔

−1
max), where 𝜔min and 𝜔max are the minimum and maximum

real eigenvalues of 𝐆.

Proof. This statement is true if 𝛼×𝜔𝑖 ≠ 1 for all 𝑖, which wewill show directly. For𝜔𝑖 = 0,
this is trivially the case; we need to show it for all 𝜔𝑖 ≠ 0. Notice that trace(𝐆) = 0,
which (combined with 𝜔𝑖 ≠ 0) implies that 𝜔min < 0 and 𝜔max > 0. In order to show
our result, we have two requirements. For positive eigenvalues we need to show that
𝛼 < 𝜔−1

𝑖 , and for negative ones that 𝛼 > 𝜔−1
𝑖 . The result follows from knowing that

𝜔−1
min < 𝛼 < 𝜔−1

max.

Non-singularity ensures the existence of the filter and the continuity of its determinant.
Next, we are concerned with its stationarity,6 which we can guarantee if the Neumann
4The eigenvector centrality is transformed from 0.5, 0.16̇, 0.3̇ for agents 𝑖, 𝑗, 𝑘 to 0.3̇ for all agents.
5This normalization will also allow us to extend the domain of Equation 1 from the positive to all reals.
6In the network context, stationarity implies that the (absolute) connectivity should be decreasing with
the order of neighbors, i.e., units are more connected to their direct neighbors than to their neighbors’
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series of the filter is convergent, or equivalently, if the spectral radius of 𝐒 is less than
unity. The following corollary follows from the definition of the spectral radius.

Corollary 1. The spectral radius of (𝐈 − 𝛼𝐆) is less than unity for 𝛼 ∈ (−𝜌(𝐆)
−1, 𝜌(𝐆)−1

).

As can be seen, conclusive bounds for 𝜆 are determined by the spectral radius of 𝐆.
Under relatively weak additional constraints, the spectral radius coincides with the max-
imum real eigenvalue. This result is good news for the literature, where the standard
domain, 𝜆 ∈ (−1, 1), is supported by the standard choice of row-stochastic normaliza-
tion for𝐖, which guarantees a unit spectral radius. At the same time, the inverse spectral
radius, 𝜌 (𝐆), emerges as an alternative, structure-preserving normalization factor.7

3 Estimation

We consider the model in Equations 2 and 5, where we constrain the connectivity to
𝑓(𝜆, 𝛿) to illustrate (i.e., we consider the network model in Equation 6, and will assume
that positions are known). In this section, we describe a Markov chain Monte Carlo
(MCMC) approach to obtain full posteriors of this setup.

3.1 Posteriors

First, note that we can readily obtain posterior draws of (𝜷, 𝜎
2
) conditional on (𝜆, 𝛿, 𝜏)

using the approach by Makalic and Schmidt (2015). Next, we draw from the conditional
posterior of 𝜆, and then 𝜏. Finally, we draw from the conditional posterior 𝛿, and repeat
— giving us the procedure in Figure 5.

For the first step, we can rely on standard techniques, such as Gibbs sampling, by con-
ditioning on the connectivity parameters. In the second and third steps, the conditional
posteriors of 𝜆, 𝜏, and 𝛿 have no well-known form, and we must use another approach.

For 𝜆, we can use a Metropolis-Hastings step to draw from its conditional posterior,

𝑝(𝜆|𝐲, 𝜏, ⋅) ∝ |𝐒(𝜆, 𝛿)| exp{−
1

2𝜎2 (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)′ (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)}𝑝(𝜆|𝜏).

neighbors.
7For large connectivity matrices, the prospect of computing its spectral radius may appear daunting, espe-
cially when that matrix is mutable. While direct methods for determining eigenvalues can be computa-
tionally prohibitive at a complexity of 𝒪(𝑁3), iterative methods, such as the Lanczos method or Arnoldi
iteration, can provide a remedy. These methods allow us to only compute the required largest eigenvalue,
quickly converge to an exact result, and particularly benefit from sparsity, which is a common feature of
larger networks and a desirable property of approximations.
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0. Set starting values for 𝜆, 𝛿, 𝜏, 𝜎2.

1. Draw from the conditional posteriors of the nested linear model,

a) 𝑝(𝜷|𝐲, 𝜆, 𝛿, 𝜏, 𝜎
2
),

b) 𝑝(𝜎
2|𝐲, 𝜆, 𝛿, 𝜏, 𝜷).

2. a) Draw from 𝑝(𝜆|𝐲, 𝜷, 𝜎
2, 𝛿, 𝜏), and

b) 𝑝 (𝜏|𝐲, 𝜆, ⋅).

3. Draw from 𝑝(𝛿|𝐲, 𝜷, 𝜎
2, 𝛿).

4. Go to the first step until enough draws are obtained.

Figure 5: Stylized algorithm for sampling from the model.

The conditional posterior of 𝜏 can be expressed as

𝑝(𝜏|𝐲, 𝜆, ⋅) ∝ 𝜆𝜏 (1 − 𝜆)𝜏 𝜏𝑎−1 exp−𝜏𝑏,

∝ 𝜏𝑎−1 exp−𝜏[𝑏−log(𝜆−𝜆2)],

which is the kernel of a Gamma density, which we can directly draw from using a Gibbs
step. This means that our hierarchical prior setup for 𝜆 imposes essentially no overhead
over conventional specifications.

Lastly, another Metropolis-Hastings step allows us to draw from

𝑝(𝛿|𝐲, ⋅) ∝ |𝐒(𝜆, 𝛿)| exp{−
1

2𝜎2 (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)′ (𝐒(𝜆, 𝛿)𝐲 − 𝐗𝜷)}𝑝(𝛿).

With the exception of 𝜏, these sampling steps are well-known, and all of them are
conceptually straightforward. However, they pose one major computational challenge —
that is, the determinant of the 𝑁 ×𝑁 Jacobian matrix 𝐒(𝜆, 𝛿).

3.1.1 Evaluating the Jacobian determinant

The likelihood, and hence the posterior, of our model involves a Jacobian determinant,
which poses a central computational constraint for estimation (Bivand et al., 2013). In
standard models, we can use a spectral decomposition of the fixed connectivity matrix𝐖
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to compute the determinant with the eigenvalue method, using

ln |𝐈 − 𝜆𝐖| =
𝑛

∑
𝑖=1

ln (1 − 𝜆𝜔𝑖) .

There are other approaches for large matrices, e.g. based on the lower-upper decom-
position, spline approximations, or algebraic results that make use of special connectivity
structures (see Bivand et al., 2013). However, all of these approaches rely on the connec-
tivity structure in 𝐖 being fixed, and would thus present a potentially insurmountable
computational challenge for more flexible models.

In order to still allow for rapid estimation using MCMC, we introduce the following
Gaussian process approximation

|𝐒(𝜆, 𝛿,…)| ≈ GP (𝜇(𝜆, 𝛿,… ), 𝚺(𝜆, 𝛿,… )) ,

This allows us to approximate the Jacobian determinant with high accuracy (cf. the
Supplementary Material). Essentially, we compute the eigenvalues for a grid of values (of
𝛿, etc.), use those to determine |𝐒(𝜆, 𝛿,…)| using the eigenvalue method, and fit these
training samples using Gaussian process regression. This approach provides a quantifi-
cation of uncertainty, and allows for retraining if the sampler moves to values far from
the grid. For our approach, we rely on a constant mean, 𝜇, and a Gaussian kernel for
Σ, but other options are available. Notably, Gaussian processes are widespread in the
field of spatial statistics, and have a parallel in spline regression, which can be used to
approximate one-dimensional Jacobian determinants.

3.2 Priors

In the wider econometric literature, the overall connectivity strength 𝜆 is the only parame-
ter considered to be unknown, and plays a central role when analyzing connectivity. With
a standardized connectivity matrix, the domain (−1, 1) guarantees an invertible and sta-
tionary network filter. Bayesian approaches generally assign the parameter a Uniform
prior; a useful generalization (first proposed by LeSage and Parent, 2007) is the Beta
prior

𝑝(�̄�) ∼ Be(1 + 𝜏, 1 + 𝜏),

12
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where 𝜏 ≥ 0, and we use �̄� = (𝜆 + 1) /2, scaled to live on (0, 1), for simplicity. Here,
Be(𝑎, 𝑏) denotes the density of a Beta distribution with shapes 𝑎 and 𝑏, i.e.

Be(𝑥 ∣ 𝑎, 𝑏) =
𝑥𝑎−1(1 − 𝑥)𝑏−1

Beta(𝑎, 𝑏)
.

For 𝜏 = 0, the prior is uniform over all values. With this inmind, the prior parameter 𝜏 can
be understood as excess support for the origin — but, as we will see, this interpretation
is misleadingly narrow.

Beyond the Uniform prior, we sometimes encounter 𝜏 = 0.01 in the literature, which
results in a fairly flat prior that places slightly higher weight at the origin. On one hand,
this reflects a clear orientation on flat priors that are uninformative with respect to cer-
tain values. On the other hand, however, this is driven by necessity due to the Beta
distribution’s undesirable properties. These undesirable properties are moderate peaks
in density, and excessive drop-offs towards the tails, as illustrated in Figure 6. There, we
can see three Beta densities, placing increasing mass at the origin. Even for 𝜏 = 100, the
peak remains moderate, while the density at the tails (e.g. at 0.9) becomes miniscule,
and the credible support of the prior incredibly narrow.

99% 80% 50%

τ = 100

τ = 10
τ = 1

-1.26

11.3
-1.0 f ln f 0.9 1.0

-15.3
3.70

↓-164

1.50

Figure 6: Density (left), log-density (right), and 99%, 80%, and 50% credible intervals (bottom)
for 𝜆with a Beta prior, i.e. 𝑝(�̄�) ∼ Be(1+𝜏, 1+𝜏), with 𝜏 ∈ {1, 10, 100}. More informative priors
(with increasing 𝜏) lead to narrow credible intervals, with values in the tail (e.g. 0.9, compare the
right panel) receiving infinitesimal prior support.

With any prior distribution, we want to express the prior information that is available

13



Networks in Space Kuschnig, N.

to us without distorting insights that we can obtain from the data. For our prior for 𝜆, we
thus want to incorporate information and avoid potential distortions. First, consider the
often implicit, and sometimes explicit preference for parsimony, i.e. 𝜆 = 0. Without de-
cent support for non-zero values, it appears reasonable to skip the superfluous complexity
of connectivity. This potentially special role of zero highlights the distorting information
induced by the Uniform prior. While this flat prior indicates no preference for any val-
ues, it implicitly prefers large values, essentially imposing connectivity on the model. For
instance, we have 𝑝(|𝜆| > 0.1) = 9 ⋅ 𝑝(|𝜆| ≤ 0.1), i.e., .

This motivates our departing point, which is the the following mixture prior

𝑝(�̄�) ∼
{

Be(1 + 𝜏0, 1 + 𝜏0), if 𝛾 = 1,

Be(1 + 𝜏1, 1 + 𝜏1), if 𝛾 = 0,

where 𝜏0 ll 𝜏1 are shape parameters, and 𝛾 is an indicator. This prior essentially repre-
sents a variable selection procedure for 𝜆. For 𝛾 = 0, the sharp spike at zero that is induced
by 𝜏1 leads to a collapse to the linear model. For 𝛾 = 1, we have a comparatively flat prior
for 𝜆, mirroring standard setups. This small adaptation to a spike-and-slab prior takes
us in the right direction conceptually, but arguably remains too rigid (except, perhaps,
for panels with time-specific connectivity). Next, we consider further sources of prior
information, and develop a practical prior that can accommodate our prior convictions.

The second source of prior information we want to reflect concerns the model specifi-
cation — in particular, the boundaries of 𝜆. Parameters that lie at their boundary com-
monly cause issues for statistical models (Chernoff, 1954; Self and Liang, 1987; Chen
and Liang, 2010), and 𝜆 is no exception. Numerical instability from the filter approach-
ing singularity is an obvious example, but not the most damning. Instead, a major issue
are pathological solutions8 that arise, not from the phenomenon under investigation, but
the peculiar structure of the model (see, for example, Angrist, 2014; Halleck Vega and
Elhorst, 2015). In the face of these technical and theoretical caveats, it is sensible to
regularize 𝜆 and limit the support at the boundaries by imposing a suitable prior.

I propose the following continuous mixture of Beta distributions as a prior, which can
coalesce the above sources of prior information in a straightforward way.

𝑝(�̄�) ∼ Be(1 + 𝜏, 1 + 𝜏), 𝑝(𝜏) ∼ Ga(𝑎, 𝑏), (9)

where the mixing density is a Gamma distribution with shape 𝑎 and rate 𝑏, which has

8One example for a model considered here, is the perfect fit from 𝜆 → −1, 𝛿 → 0, and 𝛼 = ∑𝑛
𝑖=1 𝑦𝑖.
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proven to be useful for this purpose in similar settings (see Park and Casella, 2008; Griffin
and Brown, 2010). This mixture affords us considerable flexibility for prior elicitation,
allowing us to act upon the prior information discussed above.

τ ~ G(ɑ = 1, β)

-0.29 0.62-0.87 0.87

0.00

1.45

3.35

10.02
τ ~ G(a, β = 1)

-0.14 0.42-0.87 0.87

0.00
1.45

3.66

11.31

τ ~ G(ɑ = 10, β)

-0.05 0.15-0.42 0.42

0.00
3.66

11.17

35.24
τ ~ G(ɑ = 0.1, β)

-0.91 0.93
0.00

1.05
1.31

2.35

Figure 7: Density (left), log-density (right), and 99%, 80%, and 50% credible intervals (bottom)
with a Beta-Gamma prior.

The Beta-Gamma mixture can accommodate a wide range of shapes, as exemplified
in Figure 7. We can place considerable mass at the origin, while also accommodating
values in the tails. If we constrain the prior to the special case of an Exponential (𝑎 = 1,
top-left) and orient ourselves on Figure 6, we can clearly see that the mixture prior yields
more pronounced peaks with wider credible support and without excessive drop-offs.
By varying both parameters, we are able to flexibly induce fine-tuned priors, essentially
without overhead.

The proposed Beta-Gamma shrinkage prior changes the prior specification from an
issue of choosing specific values, to one concerned with parsimony and regularization.
Increased weight at the origin means that the prior does not induce spillover effects per
se, while the tail behavior allows us to provide regularization without limiting support
to narrow regions a priori. The result is a flexible prior that can better express many
prior convictions. Nonetheless, there may be reservations to even weakly informative
priors.9 While they may not always be a necessity, it is important to keep in mind that
we introduce this structure to free up the previously implicit and infinitely informative
priors that are fixed structural parameters.
9Ignore, for this example, that the standard flat priors are heavily informative in terms of size.
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Figure 8: Visualization of different prior setups for 𝑘, with 𝑛 = 100.

Priors for the structure. Parameters of the network structure include (1) the locations,
(2) the speed of distance-decay, and (3) the number of neighbors. For each, I present
suitable prior distributions that allow for more flexible and credible models.

The first candidate for more explicit treatment is the number of neighbors in a 𝑘-nearest
neighbor specification. Limited variations to the parameter are commonly considered
for robustness checks, and have previously been addressed within a model averaging
framework (see Lesage and Fischer, 2008; Debarsy and LeSage, 2020; Zhang and Yu,
2018, for instance). While the discrete parameter lends itself to model averaging, we
will take it one step further and treat 𝑘 itself in a fully Bayesian way. For this, we can
consider it as the result of 𝑁 trials that determine whether any two units are neighbors
or not. Such a trial can be modeled with a Beta-binomial distribution, i.e.

𝑝(𝑘) ∼ BB(𝑁, 𝑎, 𝑏),

where𝑁 is the number of trials (i.e. potential neighbors), 𝑎 and 𝑏 describe the probability
of success, and BB(𝑁, 𝑜𝑓𝑎, 𝑏) denotes the density of a Beta-binomial distribution, i.e.

BB(𝑥|𝑁, 𝑎, 𝑏) =
(

𝑁
𝑥)

Beta(𝑎 + 𝑥, 𝑏 + 𝑁 − 𝑥)
Beta(𝑎, 𝑏)

.

With this prior, there is no need to constrain our model to a selection of values. We can
open the full model space by setting𝑁 = 𝑛−1, retain sparsity in connections by choosing
𝑎 < 𝑏 appropriately, and allow for efficient estimation using Markov chain Monte Carlo
methods.
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Figure 9: Visualization of different prior setups for 𝛿. The left panel highlights behavior near
the focal value of 𝛿 = 1; the right panel shows the tail behavior.

In the literature, there is a strong preference for few neighbors, expressed in empirical
work and motivated by practical and theoretical reasons. In Figure 8, we can see that
the Beta-Binomial prior allows for nuanced priors that reflect this preference. However, it
mirrors the underlying Beta distribution, in that it experiences excessive drop-off in the
tails. If this aspect is considered restrictive, a Beta-negative-Binomial prior (visualized)
can present an even less informative alternative.

Next, we consider the distance-decay parameter 𝛿. Earlier works that are limited to
local lags show that there is impactful uncertainty around this parameter (Halleck Vega
and Elhorst, 2015; Kuschnig, 2022). Standard model averaging approaches provide no
remedy due to the continuous nature of 𝛿. With our fully Bayesian approach, however,
we merely need a sensible prior for the parameter. A useful option is

𝛿 ∼ Ga−1(𝑎, 𝑏).

The inverse-Gamma distribution is flexible enough to accommodate general prior con-
ceptions. For our parameter, an important benefit is that it avoids placing weight at and
near zero values, where every unit is equally connected to every other unit. If these small
values at the left tail are a problem, a log-Normal prior can be a useful alternative. When
strong and explicit prior information is available, the Weibull distribution can be another
useful alternative. For a visualization of selected priors, see Figure 9.

Regarding specific values for 𝛿, the literature is not particularly informative. While
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suitable values depend on the distances involved, 𝛿 = 1 can serve as an anchor for prior
elicitation. Below it, i.e. for 𝛿 ll 1, connections between neighbors are weighted more
equally, with less regard to the distance. For 𝛿 ≫ 1, by contrast, only the closest neigh-
bors retain relevance as connectivity levels off faster than the distance.

4 Application

Deforestation of the Brazilian Amazon continues to be a pressing issue, threatening the
forest’s roles in, e.g., stabilizing the global climate and harboring vast biodiversity. As a
public good, the Amazon sustainably provides vast benefits on global and local levels, but
is susceptible to over-exploitation by actors that can appropriate a larger share of returns
(in the short term) at the cost of the total benefit. In the case of the Brazilian Amazon
these returns stem from the value of land, which is largely unowned or only protected by
relatively weak property rights.

2010 2020
0

10,000

20,000

30,000

Deforestation (km2)

Figure 10: Annual deforestation rates
in the Brazilian Amazon in square kilo-
meters (Source: INPE / PRODES).

To combat the rampant deforestation rates of the early 2000s
(cf. Figure 10), the Brazilian government and private actors im-
plemented a number of interventions to protect the Brazilian
Amazon. These include better facilities for monitoring deforesta-
tion (such as the PRODES and DETER programs), a central prop-
erty registry (CAR), and strengthened property rights for local
and indigenous peoples. These interventions can mostly be char-
acterized as isolating forested land from markets. Particularly
salient examples include the ‘Soy Moratorium’, which bans soy
from previously forested areas in the Amazon from large parts of
supply chains, or the ‘Cattle Agreements’ for an attempted paral-
lel for beef supply chains. Other, arguably more impactful inter-
ventions of the kind include various protected and conservation areas, and the Brazilian
Forest Code, which establishes, inter alia, minimum areas of private land that must be
maintained as forest. Notably, most legislation (and repercussions to transgressions) only
apply to private land, and the transition from public to private land via land grabbing is
comparatively unregulated.

This policies have had some success in the past, but have proven irresilient more re-
cently (Kuschnig, Vashold, et al., 2023). The underlying issue behind deforestation re-
mains largely unaddressed, and deforestation (for the purpose of land grabbing, agricul-
ture, etc.) remains a rational choice for many individual actors. This policy environment
is especially conducive to a number of spillover effects. Examples include the role of high-
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Figure 11: The extent
of the Brazilian ‘Legal
Amazon’ and forest areas
that were cleared between
2011–2021. Pixels indi-
cating cleared areas are
resampled from a 30 × 30
meter grid by MapBiomas;
the base image is a 2016
(06–11) cloud-free com-
pound by Planet/NICFI.

ways, such as the BR-163, which can be traced via the deforestation aisle in the center of
Figure 11 (around 55°W, 12°S). These open up vast areas of forest to commercial exploita-
tion, driving motives for land grabbing and deforestation. Another example concerns the
leakage of deforestation (and other land degradation) from the (more stringently pro-
tected) Amazon biome into the neighboring Cerrado biome, or the displacement of cattle
from pastures with soy, driving cattle herds into newly deforested areas. Due to their
nature, these shortcomings of the current interventions are hard to quantify — not least
due to various spillover effects — and hard to address in a forward-looking, sustainable
way.10

Deforestation itself is an inherently spatial process, as is agriculture and many other
potential uses for cleared land, as are many of the policies addressing it. The network
dynamics of land use decisions are arguably even more pronounced when considering,
inter alia, the risk of receiving a fine, the probability of being sentenced, and the ease
of registering appropriated land as coordination games.11 Moreover, spatial spillover ef-

10Some issues could be addressed by plugging holes in their implementation, e.g., by improving monitoring
of beef supply chains. However, if one assumes that there is (near) a continuum of goods (in the long-
term) this is like plugging holes on a sinking ship.

11Empirically, we know that, e.g, capacity limits and interference by the Bolsonaro government severely
reduced the fine intensity per deforestation, but also undermined their efficacy by instituting mandatory
‘reconciliation hearings’ for environmental offenses. This resulted in massive backlogs at court. Together
with limitation periods after which fines are written off, this can be seen as inducing a coordination game
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fects occur at local, regional, and national levels (Sá et al., 2013; Gollnow et al., 2018;
Kuschnig, Crespo Cuaresma, et al., 2021). Most empirical models of deforestation pro-
cesses, however, generally aggregate independent land use decisions to some local level,
abstracting from spatial and network dynamics. Exceptions include studies with a local
focus that sidestep the issue to an extent, and studies that explicitly allow for spatial
spillovers in their approach. These studies, which will serve as our baseline for the state
of the art, rely on strong and potentially distortive assumptions regarding the structure
of the spatial network, which is generally assumed known.

With this in mind, we will entertain a simple hierarchical extension of such approaches.
We will consider an autoregressive model, with regressors that include the initial levels
of population, GDP per capita, soy prices, cattle herd sizes, as well as controls for forested
area, dry weather, protected areas, and fine intensities. The model is given by

def𝑡 = 𝜆𝐖def𝑡 + 𝐗𝑡𝜷 + 𝜺𝑡,

𝐖 = 𝑓(𝛿, 𝑃1, 𝑃2 ∣ 𝜅, 𝑑),

where def𝑡 is log-deforestation at time 𝑡, 𝜺𝑡 also holds state- and time-fixed effects, 𝑓
is an exponential distance-decay function, 𝜅 is a distance-threshold, 𝑑 is the Euclidean
distance, and 𝑃1, 𝑃2 are the latent positions of municipalities. The prior for these positions
is given by

(𝑃1, 𝑃2) ∼ N((lon, lat), 𝜍𝐈) ,

where the mean of the multivariate Normal is given by the longitude and latitude of the
respective municipality. Other priors are standard (as described in section 3), and 𝜅 is
fixed such that links beyond the 95th quantile of a priori distances are suppressed.12 To
reduce estimation error and guarantee convergence of the sampler, we base our estimates
on 10,000 draws across 20 independent chains (after burn-in periods of 5,000 draws).

Results are reported in Table 1. First, note that estimates of the 𝜷 coefficients are rela-
tively stable across the models considered; minor reductions seem to occur for the poste-
rior means of population and soy price coefficients in more flexible models that include
endogenous network effects. These minor changes are rather unsurprising, considering
that we suppress local spillovers of these variables in all models. In terms of endogenous
spillovers, we see that both contiguity and naively fixed distance-decay specifications un-
derestimate the magnitude of the spatial filter effect. When parameterizing the decay

for the risk of having to bear fines. A similar issue exists for registrations in CAR — the more properties
are registered, the fewer can be reviewed due to capacity constraints.

12Robustness is checked, inter alia, to the prior location and scale of the latent positions, and the exact value
of 𝜅.
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LM 𝐑 𝐃 𝑔(𝛿) 𝑔(𝛿, 𝑃) 90% HPDI

forest 0.587 0.555 0.579 0.548 0.550 [0.54, 0.57]
population 0.211 0.178 0.209 0.178 0.178 [0.16, 0.20]
GDP/capita -0.374 -0.382 -0.376 -0.398 -0.401 [-0.43, -0.37]

soy-price -0.462 -0.366 -0.441 -0.337 -0.340 [-0.42, -0.26]
cattle-heads 0.308 0.301 0.310 0.309 0.308 [0.30, 0.32]

𝜆 0.146 0.035 0.198 0.187 [0.14, 0.22]
𝛿 1.00 0.076 0.092 [0.04, 0.19]

Table 1: Estimation results obtained using a classical linear model (‘LM’), a fixed and row-
stochastic contiguity matrix (‘𝐑’), a fixed exponential distance-decay matrix (‘𝐃’), a hierarchical
model of the decay parameter (‘𝑔(𝛿)’), and of the decay parameter and positions (‘𝑔(𝛿, 𝑃)’). The
last column reports the highest posterior density interval (HPDI) covering 90% of the posterior
of the most flexible hierarchical specification.

parameter 𝛿 and considering uncertainty around latent positions, we find that 𝜆 ≈ 0.19.
Due to the sampling-based approach, we can work with the full posteriors of free parame-
ters, allowing us, e.g., to summarize uncertainty using highest posterior density intervals.
Notably, this allows a degree of non-parametric identification.

0.800 to 0.900
0.900 to 0.950
0.950 to 0.975
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1.000 to 1.025
1.025 to 1.050
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Figure 12: Relative eigenvector centrality of municipalities in the network recovered by esti-
mating (𝛿, 𝑃) (left), just 𝛿 (center), and implied by fixing 𝛿 = 1 (right). When the network is
transformed to be row-stochastic all eigenvector (and out-degree) centralities are equalized.

In Figure 12, we see that the hierarchical network model can non-parametrically re-
cover structure of the underlying network. Current approaches generally equalize eigen-
vector centrality by design (via row-scaling), or impose a certain structure via the ge-
ography. In the right-most map of Figure 12, we can see how the deterministic decay-
specification leads to centralities that are dominated by the small municipalities in the
North-East due to their small size and contiguous nature. It should be clear from Fig-
ure 11 that these regions are not particularly ‘central’ in terms of forest or deforestation,
and a posteriori it shouldn’t be surprising that a more flexible model yields much slower
speeds of distance-decay, in which larger municipalities can achieve higher centrality
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(center map, cf. the largest municipality in the center, which is the location of the BR-163
highway). Lastly, we see that a specification that allows for uncertain, latent positions
further shifts the focus of the network towards the Amazon.

5 Conclusion

In this paper, I presented a hierarchical approach to jointly model spillovers and the la-
tent networks behind them. I used a hierarchical setup to estimate a latent space network
model behind the linear network model. I provided a theoretical foundation for the net-
work in graph theory, and showed how to identify the strength of spillover effects. I
discussed interpretation of spillovers, and the possibility of conducting inference with re-
spect to the recovered network. I proposed a Bayesian sampling approach to estimate
the model, facilitating full posterior inference. I discussed the role of sensible priors, and
proposed alternatives to the ones currently established in the literature. Lastly, I demon-
strated the approach in an investigation of spillover effects in Brazilian deforestation.
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